Firsh Push at 20241207

This commit is contained in:
2024-12-07 02:00:39 +08:00
commit 4bd0ae023d
122 changed files with 2804 additions and 0 deletions

View File

@@ -0,0 +1,78 @@
from Read_and_process_image.ReadAndProcess import Read_image_and_Process_image
from model_data_processing.processing import shuffle_data
from merge_class.merge import merge
from Read_and_process_image.ReadAndProcess import Read_image_and_Process_image
from Load_process.LoadData import Load_Data_Prepare, Load_Data_Tools
class Load_Indepentend_Data():
def __init__(self, Labels, OneHot_Encording):
'''
影像切割物件
label有2類,會將其轉成one-hot-encoding的形式
[0, 1] = NPC_negative
[1, 0] = NPC_positive
'''
self.merge = merge()
self.Labels = Labels
self.OneHot_Encording = OneHot_Encording
pass
def process_main(self, Test_data_root, Validation_data_root):
self.test, self.test_label = self.get_Independent_image(Test_data_root)
print("\ntest_labels有" + str(len(self.test_label)) + "筆資料\n")
self.validation, self.validation_label = self.get_Independent_image(Validation_data_root)
print("validation_labels有 " + str(len(self.validation_label)) + " 筆資料\n")
def get_Independent_image(self, independent_DataRoot):
image_processing = Read_image_and_Process_image()
classify_image = []
Total_Dict_Data_Root = self.Get_Independent_data_Root(independent_DataRoot) # 讀取測試資料集的資料
Total_Dict_Data_Root = self.Specified_Amount_Of_Data(Total_Dict_Data_Root) # 打亂並取出指定資料筆數的資料
Total_List_Data_Root = [Total_Dict_Data_Root[self.Labels[0]], Total_Dict_Data_Root[self.Labels[1]]]
test_label, Classify_Label = [], []
i = 0 # 計算classify_image的counter且計算總共有幾筆資料
for test_title in Total_List_Data_Root: # 藉由讀取所有路徑來進行讀檔
test_label = image_processing.make_label_list(len(test_title), self.OneHot_Encording[i]) # 製作對應圖片數量的label出來+
print(self.Labels[i] + "" + str(len(test_label)) + " 筆資料 ")
classify_image.append(test_title)
Classify_Label.append(test_label)
i += 1
original_test_root = self.merge.merge_data_main(classify_image, 0, 2)
original_test_label = self.merge.merge_data_main(Classify_Label, 0, 2)
test = []
test = image_processing.Data_Augmentation_Image(original_test_root)
test, test_label = image_processing.image_data_processing(test, original_test_label)
test = image_processing.normalization(test)
return test, test_label
def Get_Independent_data_Root(self, load_data_root):
Prepare = Load_Data_Prepare()
Load_Tool = Load_Data_Tools()
Prepare.Set_Data_Content([], len(self.Labels))
Prepare.Set_Data_Dictionary(self.Labels, Prepare.Get_Data_Content(), 2)
Get_Data_Dict_Content = Prepare.Get_Data_Dict()
Total_Data_Roots = Load_Tool.get_data_root(load_data_root, Get_Data_Dict_Content, self.Labels)
return Total_Data_Roots
def Specified_Amount_Of_Data(self, Data): # 打亂資料後重新處理
Data = shuffle_data(Data, self.Labels, 2)
tmp = []
if len(Data[self.Labels[0]]) >= len(Data[self.Labels[1]]):
for i in range(len(Data[self.Labels[1]])):
tmp.append(Data[self.Labels[0]][i])
Data[self.Labels[0]] = tmp
else:
for i in range(len(Data[self.Labels[0]])):
tmp.append(Data[self.Labels[1]][i])
Data[self.Labels[1]] = tmp
return Data