from Read_and_process_image.ReadAndProcess import Read_image_and_Process_image from model_data_processing.processing import shuffle_data from merge_class.merge import merge from Read_and_process_image.ReadAndProcess import Read_image_and_Process_image from Load_process.LoadData import Load_Data_Prepare, Load_Data_Tools class Load_Indepentend_Data(): def __init__(self, Labels, OneHot_Encording): ''' 影像切割物件 label有2類,會將其轉成one-hot-encoding的形式 [0, 1] = NPC_negative [1, 0] = NPC_positive ''' self.merge = merge() self.Labels = Labels self.OneHot_Encording = OneHot_Encording pass def process_main(self, Test_data_root, Validation_data_root): self.test, self.test_label = self.get_Independent_image(Test_data_root) print("\ntest_labels有" + str(len(self.test_label)) + "筆資料\n") self.validation, self.validation_label = self.get_Independent_image(Validation_data_root) print("validation_labels有 " + str(len(self.validation_label)) + " 筆資料\n") def get_Independent_image(self, independent_DataRoot): image_processing = Read_image_and_Process_image() classify_image = [] Total_Dict_Data_Root = self.Get_Independent_data_Root(independent_DataRoot) # 讀取測試資料集的資料 Total_Dict_Data_Root = self.Specified_Amount_Of_Data(Total_Dict_Data_Root) # 打亂並取出指定資料筆數的資料 Total_List_Data_Root = [Total_Dict_Data_Root[self.Labels[0]], Total_Dict_Data_Root[self.Labels[1]]] test_label, Classify_Label = [], [] i = 0 # 計算classify_image的counter,且計算總共有幾筆資料 for test_title in Total_List_Data_Root: # 藉由讀取所有路徑來進行讀檔 test_label = image_processing.make_label_list(len(test_title), self.OneHot_Encording[i]) # 製作對應圖片數量的label出來+ print(self.Labels[i] + " 有 " + str(len(test_label)) + " 筆資料 ") classify_image.append(test_title) Classify_Label.append(test_label) i += 1 original_test_root = self.merge.merge_data_main(classify_image, 0, 2) original_test_label = self.merge.merge_data_main(Classify_Label, 0, 2) test = [] test = image_processing.Data_Augmentation_Image(original_test_root) test, test_label = image_processing.image_data_processing(test, original_test_label) test = image_processing.normalization(test) return test, test_label def Get_Independent_data_Root(self, load_data_root): Prepare = Load_Data_Prepare() Load_Tool = Load_Data_Tools() Prepare.Set_Data_Content([], len(self.Labels)) Prepare.Set_Data_Dictionary(self.Labels, Prepare.Get_Data_Content(), 2) Get_Data_Dict_Content = Prepare.Get_Data_Dict() Total_Data_Roots = Load_Tool.get_data_root(load_data_root, Get_Data_Dict_Content, self.Labels) return Total_Data_Roots def Specified_Amount_Of_Data(self, Data): # 打亂資料後重新處理 Data = shuffle_data(Data, self.Labels, 2) tmp = [] if len(Data[self.Labels[0]]) >= len(Data[self.Labels[1]]): for i in range(len(Data[self.Labels[1]])): tmp.append(Data[self.Labels[0]][i]) Data[self.Labels[0]] = tmp else: for i in range(len(Data[self.Labels[0]])): tmp.append(Data[self.Labels[1]][i]) Data[self.Labels[1]] = tmp return Data