import torch import torch.nn as nn import torch.optim as optim import torchvision.transforms as transforms import timm class ModifiedXception(nn.Module): def __init__(self): super(ModifiedXception, self).__init__() # 加載 Xception 預訓練模型,去掉最後一層 (fc 層) self.base_model = timm.create_model('xception', pretrained=True) self.base_model.fc = nn.Identity() # 移除原來的 fully connected 層 # 新增全局平均池化層、隱藏層和輸出層 self.global_avg_pool = nn.AdaptiveAvgPool2d(1) # 全局平均池化 self.hidden_layer = nn.Linear(2048, 1370) # 隱藏層,輸入大小取決於 Xception 的輸出大小 self.output_layer = nn.Linear(1370, 2) # 輸出層,依據分類數目設定 # 激活函數與 dropout self.relu = nn.ReLU() self.dropout = nn.Dropout(0.6) def forward(self, x): x = self.base_model(x) # Xception 主體 x = self.global_avg_pool(x) # 全局平均池化 x = self.relu(self.hidden_layer(x)) # 隱藏層 + ReLU x = self.dropout(x) # Dropout x = self.output_layer(x) # 輸出層 return x