Files
Stomach_Cancer_Keras/Image_Process/image_enhancement.py
2024-12-07 02:00:39 +08:00

87 lines
4.0 KiB
Python
Raw Permalink Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
import cv2
import numpy as np
def shapen(image): # 銳化處理
sigma = 100
blur_img = cv2.GaussianBlur(image, (0, 0), sigma)
usm = cv2.addWeighted(image, 1.5, blur_img, -0.5, 0)
return usm
def increase_contrast(image): # 增加資料對比度
output = image # 建立 output 變數
alpha = 2
beta = 10
cv2.convertScaleAbs(image, output, alpha, beta) # 套用 convertScaleAbs
return output
def adaptive_histogram_equalization(image):
ycrcb = cv2.cvtColor(image, cv2.COLOR_BGR2YCR_CB)
channels = cv2.split(ycrcb)
clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8, 8))
clahe.apply(channels[0], channels[0])
ycrcb = cv2.merge(channels)
Change_image = cv2.cvtColor(ycrcb, cv2.COLOR_YCR_CB2BGR)
return Change_image
def Remove_Background(image, Matrix_Size):
skinCrCbHist = np.zeros((256,256), dtype= np.uint8)
cv2.ellipse(skinCrCbHist, (113,155),(23,25), 43, 0, 360, (255, 255, 255), -1) #繪製橢圓弧線
img_ycrcb = cv2.cvtColor(image, cv2.COLOR_BGR2YCR_CB)
y,cr,cb = cv2.split(img_ycrcb) #拆分出Y,Cr,Cb值
skin = np.zeros(cr.shape, dtype = np.uint8) #掩膜
(x,y) = cr.shape
# 依序取出圖片中每個像素
for i in range(x):
for j in range(y):
if skinCrCbHist [cr[i][j], cb[i][j]] > 0: #若不在橢圓區間中
skin[i][j] = 255
# 如果該像素的灰階度大於 200調整該像素的透明度
# 使用 255 - gray[y, x] 可以將一些邊緣的像素變成半透明,避免太過鋸齒的邊緣
# img_change = cv2.cvtColor(img_change, cv2.COLOR_BGRA2BGR)
img = cv2.bitwise_and(image, image, mask = skin)
img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
h = image.shape[0] # 取得圖片高度
w = image.shape[1] # 取得圖片寬度
for x in range(w):
for y in range(h):
if img_gray[y, x] == 0:
# if x == 0 and y == 0: # 當X Y都在左上角時
# image[y, x] = Add(1, Matrix_Size, image[y, x]) / Matrix_Size
# if x == w - 1 and y == 0: # 當X Y都在右上角時
# image[y, x] = Add(w - Matrix_Size, w, image[y, x]) / Matrix_Size
# if x == 0 and y == h - 1: # 當X Y都在左下角時
# image[y, x] = (image[y - 1, x] + image[y - 1, x + 1] + image[y, x + 1]) / 3
# if x == w - 1 and y == h - 1: # 當X Y都在右下角時
# image[y, x] = (image[y, x - 1] + image[y - 1, x - 1] + image[y - 1, x]) / 3
# if (x > 0 and x < w - 1) and y == 0: # 當上面的X Y從左到右
# image[y, x] = (image[y, x - 1] + image[y + 1, x - 1] + image[y + 1, x] + image[y, x + 1] + image[y + 1, x + 1]) / 5
# if (x > 0 and x < w - 1) and y == h - 1: # 當下面的X Y從左到右
# image[y, x] = (image[y, x - 1] + image[y - 1, x - 1] + image[y - 1, x] + image[y, x + 1] + image[y - 1, x + 1]) / 5
# if x == 0 and (y > 0 and y < h - 1): # 當左邊的X Y從上到下
# image[y, x] = (image[y - 1, x] + image[y - 1, x + 1] + image[y, x + 1] + image[y + 1, x + 1] + image[y + 1, x]) / 5
# if x == w - 1 and (y > 0 and y < h - 1): # 當右邊X Y從上到下
# image[y, x] = (image[y - 1, x] + image[y - 1, x - 1] + image[y, x - 1] + image[y + 1, x - 1] + image[y + 1, x]) / 5
if (x >= 1 and x < w - 1) and (y >= 1 and y < h - 1): # 當y >= 2 且 X >= 2
image[y, x] = Add(x, y, image, Matrix_Size) / Matrix_Size
# BGRA_image[y, x, 3] = 255 - gray[y, x]
return image
def Add(width_Center, Height_Center, image, Mask_Size):
total = 0
for i in range(Mask_Size):
for j in range(Mask_Size):
total += image[width_Center - ((Mask_Size - 1) / 2) + j, Height_Center - ((Mask_Size - 1) / 2) + i]
return total