Files
Stomach_Cancer_Keras/application/Xception_indepentment.py
2024-12-07 02:00:39 +08:00

256 lines
9.3 KiB
Python

# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
# SENet
# block = layers.GlobalAveragePooling2D()(residual)
# block = layers.Dense(units = residual.shape[-1] // 16, activation = "relu")(block)
# block = layers.Dense(units = residual.shape[-1], activation = "sigmoid")(block)
# block = Reshape((1, 1, residual.shape[-1]))(block)
# residual = Multiply()([residual, block])
from keras import backend
from keras import layers
from keras.layers import Reshape, Multiply, Conv1D
import math
def Xception_indepentment(input_shape=None):
channel_axis = 1 if backend.image_data_format() == "channels_first" else -1
img_input = layers.Input(shape=input_shape)
x = layers.Conv2D(
32, (3, 3), strides=(2, 2), use_bias=False, name="block1_conv1"
)(img_input)
x = layers.BatchNormalization(axis=channel_axis, name="block1_conv1_bn")(x)
x = layers.Activation("relu", name="block1_conv1_act")(x
)
x = layers.Conv2D(64, (3, 3), use_bias=False, name="block1_conv2")(x)
x = layers.BatchNormalization(axis=channel_axis, name="block1_conv2_bn")(x)
x = layers.Activation("relu", name="block1_conv2_act")(x)
residual = layers.Conv2D(
128, (1, 1), strides=(2, 2), padding="same", use_bias=False
)(x)
residual = layers.BatchNormalization(axis=channel_axis)(residual)
# 注意力機制區域
kernel = int(abs((math.log(residual.shape[-1], 2) + 1) / 2))
if kernel % 2:
kernel_size = kernel
else:
kernel_size = kernel + 1
block = layers.GlobalAveragePooling2D()(residual)
block = Reshape(target_shape = (residual.shape[-1], 1))(block)
block = Conv1D(filters = 1, kernel_size = kernel_size, padding = "same", use_bias = False, activation = "sigmoid")(block)
block = Reshape((1, 1, residual.shape[-1]))(block)
residual = Multiply()([residual, block])
x = layers.SeparableConv2D(
128, (3, 3), padding="same", use_bias=False, name="block2_sepconv1"
)(x)
x = layers.BatchNormalization(axis=channel_axis, name="block2_sepconv1_bn")(
x
)
x = layers.Activation("relu", name="block2_sepconv2_act")(x)
x = layers.SeparableConv2D(
128, (3, 3), padding="same", use_bias=False, name="block2_sepconv2"
)(x)
x = layers.BatchNormalization(axis=channel_axis, name="block2_sepconv2_bn")(
x
)
x = layers.MaxPooling2D(
(3, 3), strides=(2, 2), padding="same", name="block2_pool"
)(x)
x = layers.add([x, residual])
residual = layers.Conv2D(
256, (1, 1), strides=(2, 2), padding="same", use_bias=False
)(x)
residual = layers.BatchNormalization(axis=channel_axis)(residual)
# 注意力機制區域
kernel = int(abs((math.log(residual.shape[-1], 2) + 1) / 2))
if kernel % 2:
kernel_size = kernel
else:
kernel_size = kernel + 1
block = layers.GlobalAveragePooling2D()(residual)
block = Reshape(target_shape = (residual.shape[-1], 1))(block)
block = Conv1D(filters = 1, kernel_size = kernel_size, padding = "same", use_bias = False, activation = "sigmoid")(block)
block = Reshape((1, 1, residual.shape[-1]))(block)
residual = Multiply()([residual, block])
x = layers.Activation("relu", name="block3_sepconv1_act")(x)
x = layers.SeparableConv2D(
256, (3, 3), padding="same", use_bias=False, name="block3_sepconv1"
)(x)
x = layers.BatchNormalization(axis=channel_axis, name="block3_sepconv1_bn")(
x
)
x = layers.Activation("relu", name="block3_sepconv2_act")(x)
x = layers.SeparableConv2D(
256, (3, 3), padding="same", use_bias=False, name="block3_sepconv2"
)(x)
x = layers.BatchNormalization(axis=channel_axis, name="block3_sepconv2_bn")(x)
x = layers.MaxPooling2D(
(3, 3), strides=(2, 2), padding="same", name="block3_pool"
)(x)
x = layers.add([x, residual])
residual = layers.Conv2D(
728, (1, 1), strides=(2, 2), padding="same", use_bias=False
)(x)
residual = layers.BatchNormalization(axis=channel_axis)(residual)
# 注意力機制區域
kernel = int(abs((math.log(residual.shape[-1], 2) + 1) / 2))
if kernel % 2:
kernel_size = kernel
else:
kernel_size = kernel + 1
block = layers.GlobalAveragePooling2D()(residual)
block = Reshape(target_shape = (residual.shape[-1], 1))(block)
block = Conv1D(filters = 1, kernel_size = kernel_size, padding = "same", use_bias = False, activation = "sigmoid")(block)
block = Reshape((1, 1, residual.shape[-1]))(block)
residual = Multiply()([residual, block])
x = layers.Activation("relu", name="block4_sepconv1_act")(x)
x = layers.SeparableConv2D(
728, (3, 3), padding="same", use_bias=False, name="block4_sepconv1"
)(x)
x = layers.BatchNormalization(axis=channel_axis, name="block4_sepconv1_bn")(
x
)
x = layers.Activation("relu", name="block4_sepconv2_act")(x)
x = layers.SeparableConv2D(
728, (3, 3), padding="same", use_bias=False, name="block4_sepconv2"
)(x)
x = layers.BatchNormalization(axis=channel_axis, name="block4_sepconv2_bn")(
x
)
x = layers.MaxPooling2D(
(3, 3), strides=(2, 2), padding="same", name="block4_pool"
)(x)
x = layers.add([x, residual])
for i in range(8):
residual = x
prefix = "block" + str(i + 5)
x = layers.Activation("relu", name=prefix + "_sepconv1_act")(x)
x = layers.SeparableConv2D(
728,
(3, 3),
padding="same",
use_bias=False,
name=prefix + "_sepconv1",
)(x)
x = layers.BatchNormalization(
axis=channel_axis, name=prefix + "_sepconv1_bn"
)(x)
x = layers.Activation("relu", name=prefix + "_sepconv2_act")(x)
x = layers.SeparableConv2D(
728,
(3, 3),
padding="same",
use_bias=False,
name=prefix + "_sepconv2",
)(x)
x = layers.BatchNormalization(
axis=channel_axis, name=prefix + "_sepconv2_bn"
)(x)
x = layers.Activation("relu", name=prefix + "_sepconv3_act")(x)
x = layers.SeparableConv2D(
728,
(3, 3),
padding="same",
use_bias=False,
name=prefix + "_sepconv3",
)(x)
x = layers.BatchNormalization(
axis=channel_axis, name=prefix + "_sepconv3_bn"
)(x)
x = layers.add([x, residual])
residual = layers.Conv2D(
1024, (1, 1), strides=(2, 2), padding="same", use_bias=False
)(x)
residual = layers.BatchNormalization(axis=channel_axis)(residual)
# 注意力機制區域
kernel = int(abs((math.log(residual.shape[-1], 2) + 1) / 2))
if kernel % 2:
kernel_size = kernel
else:
kernel_size = kernel + 1
block = layers.GlobalAveragePooling2D()(residual)
block = Reshape(target_shape = (residual.shape[-1], 1))(block)
block = Conv1D(filters = 1, kernel_size = kernel_size, padding = "same", use_bias = False, activation = "sigmoid")(block)
block = Reshape((1, 1, residual.shape[-1]))(block)
residual = Multiply()([residual, block])
x = layers.Activation("relu", name="block13_sepconv1_act")(x)
x = layers.SeparableConv2D(
728, (3, 3), padding="same", use_bias=False, name="block13_sepconv1"
)(x)
x = layers.BatchNormalization(
axis=channel_axis, name="block13_sepconv1_bn"
)(x)
x = layers.Activation("relu", name="block13_sepconv2_act")(x)
x = layers.SeparableConv2D(
1024, (3, 3), padding="same", use_bias=False, name="block13_sepconv2"
)(x)
x = layers.BatchNormalization(
axis=channel_axis, name="block13_sepconv2_bn"
)(x)
x = layers.MaxPooling2D(
(3, 3), strides=(2, 2), padding="same", name="block13_pool"
)(x)
x = layers.add([x, residual])
x = layers.SeparableConv2D(
1536, (3, 3), padding="same", use_bias=False, name="block14_sepconv1"
)(x)
x = layers.BatchNormalization(
axis=channel_axis, name="block14_sepconv1_bn"
)(x)
x = layers.Activation("relu", name="block14_sepconv1_act")(x)
x = layers.SeparableConv2D(
2048, (3, 3), padding="same", use_bias=False, name="block14_sepconv2"
)(x)
x = layers.BatchNormalization(
axis=channel_axis, name="block14_sepconv2_bn"
)(x)
x = layers.Activation("relu", name="block14_sepconv2_act")(x)
return img_input, block