Files
Stomach_Cancer_Keras/all_models_tools/all_model_tools.py
2024-12-07 02:00:39 +08:00

40 lines
1.6 KiB
Python

from keras.callbacks import EarlyStopping, ReduceLROnPlateau, ModelCheckpoint
from keras.layers import GlobalAveragePooling2D, Dense, Reshape, Multiply
from Load_process.file_processing import Process_File
import datetime
def attention_block(input):
channel = input.shape[-1]
GAP = GlobalAveragePooling2D()(input)
block = Dense(units = channel // 16, activation = "relu")(GAP)
block = Dense(units = channel, activation = "sigmoid")(block)
block = Reshape((1, 1, channel))(block)
block = Multiply()([input, block])
return block
def call_back(model_name, index):
File = Process_File()
model_dir = '../Result/save_the_best_model/' + model_name
File.JudgeRoot_MakeDir(model_dir)
modelfiles = File.Make_Save_Root('best_model( ' + str(datetime.date.today()) + " )-" + str(index) + ".weights.h5", model_dir)
model_mckp = ModelCheckpoint(modelfiles, monitor='val_loss', save_best_only=True, save_weights_only = True, mode='auto')
earlystop = EarlyStopping(monitor='val_loss', patience=74, verbose=1) # 提早停止
reduce_lr = ReduceLROnPlateau(
monitor = 'val_loss',
factor = 0.94, # 學習率降低的量。 new_lr = lr * factor
patience = 2, # 沒有改進的時期數,之後學習率將降低
verbose = 0,
mode = 'auto',
min_lr = 0 # 學習率下限
)
callbacks_list = [model_mckp, earlystop, reduce_lr]
return callbacks_list