77 lines
2.8 KiB
Python
77 lines
2.8 KiB
Python
from matplotlib import pyplot as plt
|
||
import seaborn as sns
|
||
import datetime
|
||
import matplotlib.figure as figure
|
||
import matplotlib.backends.backend_agg as agg
|
||
from Load_process.file_processing import Process_File
|
||
|
||
def plot_history(Epochs, Losses, Accuracys, file_name, model_name):
|
||
File = Process_File()
|
||
|
||
plt.figure(figsize=(16,4))
|
||
plt.subplot(1,2,1)
|
||
plt.plot(range(1, Epochs + 1), Losses[0])
|
||
plt.plot(range(1, Epochs + 1), Losses[1])
|
||
plt.ylabel('Accuracy')
|
||
plt.xlabel('epoch')
|
||
plt.legend(['Train','Validation'], loc='upper left')
|
||
plt.title('Model Accuracy')
|
||
|
||
plt.subplot(1,2,2)
|
||
plt.plot(range(1, Epochs + 1), Accuracys[0])
|
||
plt.plot(range(1, Epochs + 1), Accuracys[1])
|
||
plt.ylabel('loss')
|
||
plt.xlabel('epoch')
|
||
plt.legend(['Train','Validation'], loc='upper left')
|
||
plt.title('Model Loss')
|
||
|
||
model_dir = '../Result/save_the_train_image( ' + str(datetime.date.today()) + " )"
|
||
File.JudgeRoot_MakeDir(model_dir)
|
||
modelfiles = File.Make_Save_Root(str(model_name) + " " + str(file_name) + ".png", model_dir)
|
||
plt.savefig(modelfiles)
|
||
plt.close("all") # 關閉圖表
|
||
|
||
def draw_heatmap(matrix, model_name, index): # 二分類以上混淆矩陣做法
|
||
File = Process_File()
|
||
|
||
# 创建热图
|
||
fig = figure.Figure(figsize=(6, 4))
|
||
canvas = agg.FigureCanvasAgg(fig)
|
||
Ax = fig.add_subplot(111)
|
||
sns.heatmap(matrix, square = True, annot = True, fmt = 'd', linecolor = 'white', cmap = "Purples", ax = Ax)#画热力图,cmap表示设定的颜色集
|
||
|
||
model_dir = '../Result/model_matrix_image ( ' + str(datetime.date.today()) + " )"
|
||
File.JudgeRoot_MakeDir(model_dir)
|
||
modelfiles = File.Make_Save_Root(str(model_name) + "-" + str(index) + ".png", model_dir)
|
||
|
||
# confusion.figure.savefig(modelfiles)
|
||
# 设置图像参数
|
||
Ax.set_title(str(model_name) + " confusion matrix")
|
||
Ax.set_xlabel("X-Predict label of the model")
|
||
Ax.set_ylabel("Y-True label of the model")
|
||
|
||
# 保存图像到文件中
|
||
canvas.print_figure(modelfiles)
|
||
|
||
def Confusion_Matrix_of_Two_Classification(Model_Name, Matrix, index):
|
||
File = Process_File()
|
||
|
||
fx = sns.heatmap(Matrix, annot=True, cmap='turbo')
|
||
|
||
# labels the title and x, y axis of plot
|
||
fx.set_title('Plotting Confusion Matrix using Seaborn\n\n')
|
||
fx.set_xlabel('answer Values ')
|
||
fx.set_ylabel('Predicted Values')
|
||
|
||
# labels the boxes
|
||
fx.xaxis.set_ticklabels(['False','True'])
|
||
fx.yaxis.set_ticklabels(['False','True'])
|
||
|
||
model_dir = '../Result/model_matrix_image ( ' + str(datetime.date.today()) + " )"
|
||
File.JudgeRoot_MakeDir(model_dir)
|
||
modelfiles = File.Make_Save_Root(str(Model_Name) + "-" + str(index) + ".png", model_dir)
|
||
|
||
plt.savefig(modelfiles)
|
||
plt.close("all") # 關閉圖表
|
||
|
||
pass |