The Stage is Xception+U-Net+Xception and U-Net estimates Convolution

This commit is contained in:
whitekirin 2025-10-19 17:01:50 +08:00
parent 780559d77b
commit 804f671e3e
9 changed files with 1 additions and 74 deletions

1
.python-version Normal file
View File

@ -0,0 +1 @@
3.11

View File

@ -1,74 +0,0 @@
import cv2
import numpy as np
import torch
class Read_image_and_Process_image:
def __init__(self, Image_Size) -> None:
self.Image_Size = Image_Size
pass
def get_data(self, path):
'''讀檔'''
try:
img_arr = cv2.imread(path, cv2.IMREAD_COLOR) # 讀檔(彩色)
# img_arr = cv2.imread(path, cv2.IMREAD_GRAYSCALE) # 讀檔(灰階)
resized_arr = cv2.resize(img_arr, (self.Image_Size, self.Image_Size)) # 濤整圖片大小
except Exception as e:
print(e)
return resized_arr
def Data_Augmentation_Image(self, path):
resized_arr = []
for p in path:
try:
img_arr = cv2.imread(p, cv2.IMREAD_COLOR) # 讀檔(彩色)
# img_arr = cv2.imread(path, cv2.IMREAD_GRAYSCALE) # 讀檔(灰階)
resized_arr.append(cv2.resize(img_arr, (self.Image_Size, self.Image_Size))) # 調整圖片大小
except Exception as e:
print(e)
return np.array(resized_arr)
def image_data_processing(self, data, label):
'''讀檔後處理圖片'''
data = np.asarray(data).astype(np.float32) # 將圖list轉成np.array
data = data.reshape(-1, self.Image_Size, self.Image_Size, 3) # 更改陣列形狀
label = np.array(label) # 將label從list型態轉成 numpy array
return data, label
def normalization(self, images):
imgs = []
for img in images:
img = np.asarray(img).astype(np.float32) # 將圖list轉成np.array
img = img / 255 # 標準化影像資料
imgs.append(img)
return torch.as_tensor(imgs)
# def load_numpy_data(self, file_names):
# '''載入numpy圖檔並執行影像處理提高特徵擷取'''
# i = 0
# numpy_image = []
# original_image = []
# for file_name in file_names:
# compare = str(file_name).split(".")
# if compare[-1] == "npy":
# image = np.load(file_name) # 讀圖片檔
# numpy_image.append(image) # 合併成一個陣列
# else:
# original_image.append(file_name)
# original_image = self.get_data(original_image)
# for file in original_image:
# numpy_image.append(file)
# return numpy_image
def make_label_list(self, length, content):
'''製作label的列表'''
label_list = []
for i in range(length):
label_list.append(content)
return label_list