20250315 Commits: GradCAM is finish

This commit is contained in:
whitekirin
2025-03-15 22:36:49 +08:00
parent ea8d08acc7
commit dfeec70a53
24 changed files with 331 additions and 739 deletions

View File

@@ -36,7 +36,7 @@ class Process_File():
np.save(save_root, image)
def Save_CSV_File(self, file_name, data): # 儲存訓練結果
Save_Root = '../Result/save_the_train_result(' + str(datetime.date.today()) + ")"
Save_Root = '../Result/Training_Result/save_the_train_result(' + str(datetime.date.today()) + ")"
self.JudgeRoot_MakeDir(Save_Root)
modelfiles = self.Make_Save_Root(file_name + ".csv", Save_Root) # 將檔案名稱及路徑字串合併成完整路徑
data.to_csv(modelfiles, mode = "a")

View File

@@ -48,7 +48,7 @@ class Training_Precesses:
def Combine_Signal_Dataset_To_DataLoader(self, datas : list, Labels : list, Batch_Size, status : bool = True):
dataset = self.Convert_Data_To_DataSet(datas, Labels, status)
sampler = WeightedRandomSampler(dataset, generator = self.generator) # 創建Sampler
sampler = RandomSampler(dataset, generator = self.generator) # 創建Sampler
Dataloader = DataLoader(dataset = dataset, batch_size = Batch_Size, num_workers = 0, pin_memory=True, sampler = sampler)
return Dataloader

View File

@@ -1,256 +0,0 @@
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
# SENet
# block = layers.GlobalAveragePooling2D()(residual)
# block = layers.Dense(units = residual.shape[-1] // 16, activation = "relu")(block)
# block = layers.Dense(units = residual.shape[-1], activation = "sigmoid")(block)
# block = Reshape((1, 1, residual.shape[-1]))(block)
# residual = Multiply()([residual, block])
from keras import backend
from keras import layers
from keras.layers import Reshape, Multiply, Conv1D
import math
def Xception_indepentment(input_shape=None):
channel_axis = 1 if backend.image_data_format() == "channels_first" else -1
img_input = layers.Input(shape=input_shape)
x = layers.Conv2D(
32, (3, 3), strides=(2, 2), use_bias=False, name="block1_conv1"
)(img_input)
x = layers.BatchNormalization(axis=channel_axis, name="block1_conv1_bn")(x)
x = layers.Activation("relu", name="block1_conv1_act")(x
)
x = layers.Conv2D(64, (3, 3), use_bias=False, name="block1_conv2")(x)
x = layers.BatchNormalization(axis=channel_axis, name="block1_conv2_bn")(x)
x = layers.Activation("relu", name="block1_conv2_act")(x)
residual = layers.Conv2D(
128, (1, 1), strides=(2, 2), padding="same", use_bias=False
)(x)
residual = layers.BatchNormalization(axis=channel_axis)(residual)
# 注意力機制區域
kernel = int(abs((math.log(residual.shape[-1], 2) + 1) / 2))
if kernel % 2:
kernel_size = kernel
else:
kernel_size = kernel + 1
block = layers.GlobalAveragePooling2D()(residual)
block = Reshape(target_shape = (residual.shape[-1], 1))(block)
block = Conv1D(filters = 1, kernel_size = kernel_size, padding = "same", use_bias = False, activation = "sigmoid")(block)
block = Reshape((1, 1, residual.shape[-1]))(block)
residual = Multiply()([residual, block])
x = layers.SeparableConv2D(
128, (3, 3), padding="same", use_bias=False, name="block2_sepconv1"
)(x)
x = layers.BatchNormalization(axis=channel_axis, name="block2_sepconv1_bn")(
x
)
x = layers.Activation("relu", name="block2_sepconv2_act")(x)
x = layers.SeparableConv2D(
128, (3, 3), padding="same", use_bias=False, name="block2_sepconv2"
)(x)
x = layers.BatchNormalization(axis=channel_axis, name="block2_sepconv2_bn")(
x
)
x = layers.MaxPooling2D(
(3, 3), strides=(2, 2), padding="same", name="block2_pool"
)(x)
x = layers.add([x, residual])
residual = layers.Conv2D(
256, (1, 1), strides=(2, 2), padding="same", use_bias=False
)(x)
residual = layers.BatchNormalization(axis=channel_axis)(residual)
# 注意力機制區域
kernel = int(abs((math.log(residual.shape[-1], 2) + 1) / 2))
if kernel % 2:
kernel_size = kernel
else:
kernel_size = kernel + 1
block = layers.GlobalAveragePooling2D()(residual)
block = Reshape(target_shape = (residual.shape[-1], 1))(block)
block = Conv1D(filters = 1, kernel_size = kernel_size, padding = "same", use_bias = False, activation = "sigmoid")(block)
block = Reshape((1, 1, residual.shape[-1]))(block)
residual = Multiply()([residual, block])
x = layers.Activation("relu", name="block3_sepconv1_act")(x)
x = layers.SeparableConv2D(
256, (3, 3), padding="same", use_bias=False, name="block3_sepconv1"
)(x)
x = layers.BatchNormalization(axis=channel_axis, name="block3_sepconv1_bn")(
x
)
x = layers.Activation("relu", name="block3_sepconv2_act")(x)
x = layers.SeparableConv2D(
256, (3, 3), padding="same", use_bias=False, name="block3_sepconv2"
)(x)
x = layers.BatchNormalization(axis=channel_axis, name="block3_sepconv2_bn")(x)
x = layers.MaxPooling2D(
(3, 3), strides=(2, 2), padding="same", name="block3_pool"
)(x)
x = layers.add([x, residual])
residual = layers.Conv2D(
728, (1, 1), strides=(2, 2), padding="same", use_bias=False
)(x)
residual = layers.BatchNormalization(axis=channel_axis)(residual)
# 注意力機制區域
kernel = int(abs((math.log(residual.shape[-1], 2) + 1) / 2))
if kernel % 2:
kernel_size = kernel
else:
kernel_size = kernel + 1
block = layers.GlobalAveragePooling2D()(residual)
block = Reshape(target_shape = (residual.shape[-1], 1))(block)
block = Conv1D(filters = 1, kernel_size = kernel_size, padding = "same", use_bias = False, activation = "sigmoid")(block)
block = Reshape((1, 1, residual.shape[-1]))(block)
residual = Multiply()([residual, block])
x = layers.Activation("relu", name="block4_sepconv1_act")(x)
x = layers.SeparableConv2D(
728, (3, 3), padding="same", use_bias=False, name="block4_sepconv1"
)(x)
x = layers.BatchNormalization(axis=channel_axis, name="block4_sepconv1_bn")(
x
)
x = layers.Activation("relu", name="block4_sepconv2_act")(x)
x = layers.SeparableConv2D(
728, (3, 3), padding="same", use_bias=False, name="block4_sepconv2"
)(x)
x = layers.BatchNormalization(axis=channel_axis, name="block4_sepconv2_bn")(
x
)
x = layers.MaxPooling2D(
(3, 3), strides=(2, 2), padding="same", name="block4_pool"
)(x)
x = layers.add([x, residual])
for i in range(8):
residual = x
prefix = "block" + str(i + 5)
x = layers.Activation("relu", name=prefix + "_sepconv1_act")(x)
x = layers.SeparableConv2D(
728,
(3, 3),
padding="same",
use_bias=False,
name=prefix + "_sepconv1",
)(x)
x = layers.BatchNormalization(
axis=channel_axis, name=prefix + "_sepconv1_bn"
)(x)
x = layers.Activation("relu", name=prefix + "_sepconv2_act")(x)
x = layers.SeparableConv2D(
728,
(3, 3),
padding="same",
use_bias=False,
name=prefix + "_sepconv2",
)(x)
x = layers.BatchNormalization(
axis=channel_axis, name=prefix + "_sepconv2_bn"
)(x)
x = layers.Activation("relu", name=prefix + "_sepconv3_act")(x)
x = layers.SeparableConv2D(
728,
(3, 3),
padding="same",
use_bias=False,
name=prefix + "_sepconv3",
)(x)
x = layers.BatchNormalization(
axis=channel_axis, name=prefix + "_sepconv3_bn"
)(x)
x = layers.add([x, residual])
residual = layers.Conv2D(
1024, (1, 1), strides=(2, 2), padding="same", use_bias=False
)(x)
residual = layers.BatchNormalization(axis=channel_axis)(residual)
# 注意力機制區域
kernel = int(abs((math.log(residual.shape[-1], 2) + 1) / 2))
if kernel % 2:
kernel_size = kernel
else:
kernel_size = kernel + 1
block = layers.GlobalAveragePooling2D()(residual)
block = Reshape(target_shape = (residual.shape[-1], 1))(block)
block = Conv1D(filters = 1, kernel_size = kernel_size, padding = "same", use_bias = False, activation = "sigmoid")(block)
block = Reshape((1, 1, residual.shape[-1]))(block)
residual = Multiply()([residual, block])
x = layers.Activation("relu", name="block13_sepconv1_act")(x)
x = layers.SeparableConv2D(
728, (3, 3), padding="same", use_bias=False, name="block13_sepconv1"
)(x)
x = layers.BatchNormalization(
axis=channel_axis, name="block13_sepconv1_bn"
)(x)
x = layers.Activation("relu", name="block13_sepconv2_act")(x)
x = layers.SeparableConv2D(
1024, (3, 3), padding="same", use_bias=False, name="block13_sepconv2"
)(x)
x = layers.BatchNormalization(
axis=channel_axis, name="block13_sepconv2_bn"
)(x)
x = layers.MaxPooling2D(
(3, 3), strides=(2, 2), padding="same", name="block13_pool"
)(x)
x = layers.add([x, residual])
x = layers.SeparableConv2D(
1536, (3, 3), padding="same", use_bias=False, name="block14_sepconv1"
)(x)
x = layers.BatchNormalization(
axis=channel_axis, name="block14_sepconv1_bn"
)(x)
x = layers.Activation("relu", name="block14_sepconv1_act")(x)
x = layers.SeparableConv2D(
2048, (3, 3), padding="same", use_bias=False, name="block14_sepconv2"
)(x)
x = layers.BatchNormalization(
axis=channel_axis, name="block14_sepconv2_bn"
)(x)
x = layers.Activation("relu", name="block14_sepconv2_act")(x)
return img_input, block

View File

@@ -8,144 +8,82 @@ import matplotlib.pyplot as plt
import datetime
from Load_process.file_processing import Process_File
# Grad-CAM implementation
class GradCAM:
def __init__(self, model, target_layer):
"""
初始化 Grad-CAM
Args:
model: 訓練好的 ModifiedXception 模型
target_layer: 要計算 Grad-CAM 的目標層名稱 (例如 'base_model')
"""
self.model = model
self.target_layer = target_layer
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
self.model.eval()
self.model.to(self.device)
# 用於儲存特徵圖和梯度
self.features = None
self.activations = None
self.gradients = None
# 註冊 hook
self._register_hooks()
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
def _register_hooks(self):
"""註冊前向和反向傳播的 hook"""
def forward_hook(module, input, output):
self.features = output
def backward_hook(module, grad_in, grad_out):
self.gradients = grad_out[0]
# 獲取目標層
target_module = dict(self.model.named_modules())[self.target_layer]
target_module.register_forward_hook(forward_hook)
target_module.register_backward_hook(backward_hook)
# Register hooks
self.target_layer.register_forward_hook(self.save_activations)
self.target_layer.register_backward_hook(self.save_gradients)
def generate_cam(self, input_image, target_class=None):
"""
生成 Grad-CAM 熱力圖
Args:
input_image: 輸入影像 (torch.Tensor, shape: [1, C, H, W])
target_class: 目標類別索引 (若為 None使用預測最高分數的類別)
Returns:
cam: Grad-CAM 熱力圖 (numpy array)
"""
input_image = input_image.to(self.device)
# 前向傳播
def Processing_Main(self, Test_Dataloader, File_Path):
i = 0
path = File_Path
File = Process_File()
for images, labels in Test_Dataloader:
labels = torch.as_tensor(labels, dtype=torch.float32).to(self.device)
Generate_Image = self.generate(torch.as_tensor(images,dtype=torch.float32).to(self.device))
path = File_Path
path += str(np.argmax(labels.cpu().numpy(), 1)[0])
File.JudgeRoot_MakeDir(path)
for Image_Batch in images:
File.Save_CV2_File(f"{str(i)}.png", path, self.overlay_heatmap(Generate_Image, Image_Batch))
i += 1
pass
def save_activations(self, module, input, output):
self.activations = output.detach()
def save_gradients(self, module, grad_input, grad_output):
self.gradients = grad_output[0].detach()
def generate(self, input_image, class_idx=None):
self.model.eval()
input_image.requires_grad = True
# Forward pass
output = self.model(input_image)
if target_class is None:
target_class = torch.argmax(output, dim=1).item()
# 清除梯度
if class_idx is None:
class_idx = torch.argmax(output, dim=1).item() # Use predicted class if not specified
# Zero gradients
self.model.zero_grad()
# 反向傳播計算梯度
one_hot = torch.zeros_like(output)
one_hot[0][target_class] = 1
output.backward(gradient=one_hot, retain_graph=True)
# 計算 Grad-CAM
gradients = self.gradients.data.cpu().numpy()[0]
features = self.features.data.cpu().numpy()[0]
# 全局平均池化梯度
weights = np.mean(gradients, axis=(1, 2))
# 計算加權和
cam = np.zeros(features.shape[1:], dtype=np.float32)
for i, w in enumerate(weights):
cam += w * features[i]
# ReLU 激活
cam = np.maximum(cam, 0)
# 歸一化到 0-1
cam = cam - np.min(cam)
cam = cam / np.max(cam)
# 調整大小到輸入影像尺寸
h, w = input_image.shape[2:]
cam = cv2.resize(cam, (w, h))
return cam
def overlay_cam(self, original_image, cam, alpha=0.5):
"""
將 Grad-CAM 熱力圖疊加到原始影像上
Args:
original_image: 原始影像 (numpy array, shape: [H, W, C])
cam: Grad-CAM 熱力圖
alpha: 透明度
Returns:
overlay_img: 疊加後的影像
"""
# 將熱力圖轉為 RGB
heatmap = cv2.applyColorMap(np.uint8(255 * cam), cv2.COLORMAP_JET)
heatmap = np.float32(heatmap) / 255
# 確保原始影像格式正確
if original_image.max() > 1:
original_image = original_image / 255.0
# 疊加熱力圖
overlay_img = heatmap * alpha + original_image * (1 - alpha)
overlay_img = np.clip(overlay_img, 0, 1)
return overlay_img
# Backward pass for the specific class
output[0, class_idx].backward()
def visualize(self, input_image, original_image, target_class=None, File_Name=None, model_name = None):
"""
可視化 Grad-CAM 結果
Args:
input_image: 輸入影像 (torch.Tensor)
original_image: 原始影像 (numpy array)
target_class: 目標類別索引
save_path: 保存路徑 (可選)
"""
File = Process_File()
# 生成 CAM
cam = self.generate_cam(input_image, target_class)
# Get gradients and activations
gradients = self.gradients # [B, C, H, W]
activations = self.activations # [B, C, H, W]
# Compute weights (global average pooling of gradients)
weights = torch.mean(gradients, dim=[2, 3], keepdim=True) # [B, C, 1, 1]
# Compute Grad-CAM heatmap
grad_cam = torch.sum(weights * activations, dim=1).squeeze() # [H, W]
grad_cam = F.relu(grad_cam) # Apply ReLU
grad_cam = grad_cam / (grad_cam.max() + 1e-8) # Normalize to [0, 1]
return grad_cam.cpu().numpy()
# Utility to overlay heatmap on original image
def overlay_heatmap(self, heatmap, image, alpha=0.5):
heatmap = np.uint8(255 * heatmap) # Scale to 0-255
heatmap = Image.fromarray(heatmap).resize((image.shape[1], image.shape[2]), Image.BILINEAR)
heatmap = np.array(heatmap)
heatmap = plt.cm.jet(heatmap)[:, :, :3] # Apply colormap (e.g., jet)
image = torch.as_tensor(image, dtype=torch.float32).permute(2, 1, 0)
# 疊加到原始影像
overlay = self.overlay_cam(original_image, cam)
# 顯示結果
plt.figure(figsize=(10, 5))
plt.subplot(1, 2, 1)
plt.imshow(original_image)
plt.title('Original Image')
plt.axis('off')
plt.subplot(1, 2, 2)
plt.imshow(overlay)
plt.title(f'Grad-CAM (Class {target_class})')
plt.axis('off')
model_dir = '../Result/Grad-CAM( ' + str(datetime.date.today()) + " )"
File.JudgeRoot_MakeDir(model_dir)
modelfiles = File.Make_Save_Root(str(model_name) + " " + File_Name + ".png", model_dir)
plt.savefig(modelfiles)
plt.close("all") # 關閉圖表
overlay = (alpha * heatmap + (1 - alpha) * np.array(image) / 255.0)
overlay = np.clip(overlay, 0, 1) * 255
return overlay

View File

@@ -25,7 +25,7 @@ def plot_history(Epochs, Losses, Accuracys, file_name, model_name):
plt.legend(['Train','Validation'], loc='upper left')
plt.title('Model Accuracy')
model_dir = '../Result/save_the_train_image( ' + str(datetime.date.today()) + " )"
model_dir = '../Result/Training_Image/save_the_train_image( ' + str(datetime.date.today()) + " )"
File.JudgeRoot_MakeDir(model_dir)
modelfiles = File.Make_Save_Root(str(model_name) + " " + str(file_name) + ".png", model_dir)
plt.savefig(modelfiles)
@@ -40,7 +40,7 @@ def draw_heatmap(matrix, model_name, index): # 二分類以上混淆矩陣做法
Ax = fig.add_subplot(111)
sns.heatmap(matrix, square = True, annot = True, fmt = 'd', linecolor = 'white', cmap = "Purples", ax = Ax)#画热力图cmap表示设定的颜色集
model_dir = '../Result/model_matrix_image ( ' + str(datetime.date.today()) + " )"
model_dir = '../Result/Matrix_Image/model_matrix_image ( ' + str(datetime.date.today()) + " )"
File.JudgeRoot_MakeDir(model_dir)
modelfiles = File.Make_Save_Root(str(model_name) + "-" + str(index) + ".png", model_dir)

View File

@@ -1,29 +1,22 @@
from tqdm import tqdm
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score
from torchmetrics.functional import auroc
from sklearn.model_selection import KFold
from sklearn.metrics import confusion_matrix
from all_models_tools.all_model_tools import call_back
from Model_Loss.Loss import Entropy_Loss
from merge_class.merge import merge
from Training_Tools.PreProcess import ListDataset
from Load_process.file_processing import Process_File
from draw_tools.draw import plot_history, draw_heatmap
from Load_process.file_processing import Process_File
from draw_tools.Grad_cam import GradCAM
import time
import torch.optim as optim
import numpy as np
import torch
import pandas as pd
import datetime
class All_Step:
def __init__(self, PreProcess_Classes_Data, Batch, Model, Epoch, Number_Of_Classes, Model_Name, Experiment_Name):
self.PreProcess_Classes_Data = PreProcess_Classes_Data
self.Training_DataLoader, self.Test_Dataloader = self.PreProcess_Classes_Data.Total_Data_Combine_To_DataLoader(Batch)
def __init__(self, Model, Epoch, Number_Of_Classes, Model_Name, Experiment_Name):
self.Model = Model
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
@@ -33,178 +26,130 @@ class All_Step:
self.Model_Name = Model_Name
self.Experiment_Name = Experiment_Name
def Training_Step(self, model_name, counter):
# Lists to store metrics across all folds
all_fold_train_losses = []
all_fold_val_losses = []
all_fold_train_accuracies = []
all_fold_val_accuracies = []
def Training_Step(self, train_subset, train_loader, val_loader, model_name, fold, TargetLayer):
# Reinitialize model and optimizer for each fold
# self.Model = self.Model.__class__(self.Number_Of_Classes).to(self.device) # Reinitialize model
Optimizer = optim.SGD(self.Model.parameters(), lr=0.045, momentum=0.9, weight_decay=0.01)
model_path, early_stopping, scheduler = call_back(model_name, f"_fold{fold}", Optimizer)
# Define K-fold cross-validator
K_Fold = KFold(n_splits=5, shuffle=True, random_state=42)
criterion = Entropy_Loss() # Custom loss function
Merge_Function = merge()
File = Process_File()
# Lists to store metrics for this fold
train_losses = []
val_losses = []
train_accuracies = []
val_accuracies = []
epoch = 0
# Get the underlying dataset from PreProcess_Classes_Data
training_dataset = ListDataset(data_list = self.PreProcess_Classes_Data.Training_Datas, labels_list = self.PreProcess_Classes_Data.Training_Labels, status = True)
# Epoch loop
for epoch in range(self.Epoch):
self.Model.train() # Start training
running_loss = 0.0
all_train_preds = []
all_train_labels = []
processed_samples = 0
# K-Fold loop
for fold, (train_idx, val_idx) in enumerate(K_Fold.split(training_dataset)):
print(f"\nStarting Fold {fold + 1}/5")
# Calculate epoch start time
start_time = time.time()
total_samples = len(train_subset) # Total samples in subset, not DataLoader
# Create training and validation subsets for this fold
train_subset = torch.utils.data.Subset(training_dataset, train_idx)
val_subset = torch.utils.data.Subset(training_dataset, val_idx)
# Progress bar for training batches
epoch_iterator = tqdm(train_loader, desc=f"Fold {fold + 1}/5, Epoch [{epoch + 1}/{self.Epoch}]")
# Wrap subsets in DataLoaders (use same batch size as original)
batch_size = self.Training_DataLoader.batch_size
train_loader = torch.utils.data.DataLoader(train_subset, batch_size=batch_size, shuffle=True)
val_loader = torch.utils.data.DataLoader(val_subset, batch_size=batch_size, shuffle=False)
for inputs, labels in epoch_iterator:
inputs, labels = inputs.to(self.device), labels.to(self.device) # Already tensors from DataLoader
# Reinitialize model and optimizer for each fold
self.Model = self.Model.__class__(self.Number_Of_Classes).to(self.device) # Reinitialize model
Optimizer = optim.SGD(self.Model.parameters(), lr=0.045, momentum=0.9, weight_decay=0.1)
model_path, early_stopping, scheduler = call_back(model_name, str(counter) + f"_fold{fold}", Optimizer)
Optimizer.zero_grad()
outputs = self.Model(inputs)
loss = criterion(outputs, labels)
loss.backward()
Optimizer.step()
running_loss += loss.item()
criterion = Entropy_Loss() # Custom loss function
Merge_Function = merge()
# Collect training predictions and labels
Output_Values, Output_Indexs = torch.max(outputs, dim=1)
True_Indexs = np.argmax(labels.cpu().numpy(), axis=1)
# Lists to store metrics for this fold
train_losses = []
val_losses = []
train_accuracies = []
val_accuracies = []
all_train_preds.append(Output_Indexs.cpu().numpy())
all_train_labels.append(True_Indexs)
# Epoch loop
for epoch in range(self.Epoch):
self.Model.train() # Start training
running_loss = 0.0
all_train_preds = []
all_train_labels = []
processed_samples = 0
processed_samples += inputs.size(0) # Use size(0) for batch size
# Calculate epoch start time
start_time = time.time()
total_samples = len(train_subset) # Total samples in subset, not DataLoader
# Calculate progress and timing
progress = (processed_samples / total_samples) * 100
elapsed_time = time.time() - start_time
iterations_per_second = processed_samples / elapsed_time if elapsed_time > 0 else 0
eta = (total_samples - processed_samples) / iterations_per_second if iterations_per_second > 0 else 0
time_str = f"{int(elapsed_time//60):02d}:{int(elapsed_time%60):02d}<{int(eta//60):02d}:{int(eta%60):02d}"
# Progress bar for training batches
epoch_iterator = tqdm(train_loader, desc=f"Fold {fold + 1}/5, Epoch [{epoch + 1}/{self.Epoch}]")
# Calculate batch accuracy
batch_accuracy = (Output_Indexs.cpu().numpy() == True_Indexs).mean()
for inputs, labels in epoch_iterator:
inputs, labels = inputs.to(self.device), labels.to(self.device) # Already tensors from DataLoader
# Update progress bar
epoch_iterator.set_postfix_str(
f"{processed_samples}/{total_samples} [{time_str}, {iterations_per_second:.2f}it/s, "
f"acc={batch_accuracy:.3f}, loss={loss.item():.3f}]"
)
Optimizer.zero_grad()
epoch_iterator.close()
# Merge predictions and labels
all_train_preds = Merge_Function.merge_data_main(all_train_preds, 0, len(all_train_preds))
all_train_labels = Merge_Function.merge_data_main(all_train_labels, 0, len(all_train_labels))
Training_Loss = running_loss / len(train_loader)
train_accuracy = accuracy_score(all_train_labels, all_train_preds)
train_losses.append(Training_Loss)
train_accuracies.append(train_accuracy)
# Validation step
self.Model.eval()
val_loss = 0.0
all_val_preds = []
all_val_labels = []
with torch.no_grad():
for inputs, labels in val_loader:
inputs, labels = inputs.to(self.device), labels.to(self.device)
outputs = self.Model(inputs)
loss = criterion(outputs, labels)
loss.backward()
Optimizer.step()
running_loss += loss.item()
val_loss += loss.item()
# Collect training predictions and labels
# Collect validation predictions and labels
Output_Values, Output_Indexs = torch.max(outputs, dim=1)
True_Indexs = np.argmax(labels.cpu().numpy(), axis=1)
all_train_preds.append(Output_Indexs.cpu().numpy())
all_train_labels.append(True_Indexs)
all_val_preds.append(Output_Indexs.cpu().numpy())
all_val_labels.append(True_Indexs)
processed_samples += inputs.size(0) # Use size(0) for batch size
# Merge predictions and labels
all_val_preds = Merge_Function.merge_data_main(all_val_preds, 0, len(all_val_preds))
all_val_labels = Merge_Function.merge_data_main(all_val_labels, 0, len(all_val_labels))
# Calculate progress and timing
progress = (processed_samples / total_samples) * 100
elapsed_time = time.time() - start_time
iterations_per_second = processed_samples / elapsed_time if elapsed_time > 0 else 0
eta = (total_samples - processed_samples) / iterations_per_second if iterations_per_second > 0 else 0
time_str = f"{int(elapsed_time//60):02d}:{int(elapsed_time%60):02d}<{int(eta//60):02d}:{int(eta%60):02d}"
val_loss /= len(val_loader)
val_accuracy = accuracy_score(all_val_labels, all_val_preds)
# Calculate batch accuracy
batch_accuracy = (Output_Indexs.cpu().numpy() == True_Indexs).mean()
val_losses.append(val_loss)
val_accuracies.append(val_accuracy)
# Update progress bar
epoch_iterator.set_postfix_str(
f"{processed_samples}/{total_samples} [{time_str}, {iterations_per_second:.2f}it/s, "
f"acc={batch_accuracy:.3f}, loss={loss.item():.3f}]"
)
Grad = GradCAM(self.Model, TargetLayer)
Grad.Processing_Main(val_loader, f"../Result/GradCAM_Image/Validation/GradCAM_Image({str(datetime.date.today())})/fold-{str(fold)}/")
epoch_iterator.close()
# Merge predictions and labels
all_train_preds = Merge_Function.merge_data_main(all_train_preds, 0, len(all_train_preds))
all_train_labels = Merge_Function.merge_data_main(all_train_labels, 0, len(all_train_labels))
Training_Loss = running_loss / len(train_loader)
train_accuracy = accuracy_score(all_train_labels, all_train_preds)
train_losses.append(Training_Loss)
train_accuracies.append(train_accuracy)
# Validation step
self.Model.eval()
val_loss = 0.0
all_val_preds = []
all_val_labels = []
with torch.no_grad():
for inputs, labels in val_loader:
inputs, labels = inputs.to(self.device), labels.to(self.device)
outputs = self.Model(inputs)
loss = criterion(outputs, labels)
val_loss += loss.item()
# Collect validation predictions and labels
Output_Values, Output_Indexs = torch.max(outputs, dim=1)
True_Indexs = np.argmax(labels.cpu().numpy(), axis=1)
all_val_preds.append(Output_Indexs.cpu().numpy())
all_val_labels.append(True_Indexs)
# Merge predictions and labels
all_val_preds = Merge_Function.merge_data_main(all_val_preds, 0, len(all_val_preds))
all_val_labels = Merge_Function.merge_data_main(all_val_labels, 0, len(all_val_labels))
val_loss /= len(val_loader)
val_accuracy = accuracy_score(all_val_labels, all_val_preds)
val_losses.append(val_loss)
val_accuracies.append(val_accuracy)
# Early stopping
early_stopping(val_loss, self.Model, model_path)
if early_stopping.early_stop:
print(f"Early stopping triggered in Fold {fold + 1} at epoch {epoch + 1}")
Total_Epoch = epoch + 1
break
# Early stopping
early_stopping(val_loss, self.Model, model_path)
if early_stopping.early_stop:
print(f"Early stopping triggered in Fold {fold + 1} at epoch {epoch + 1}")
break
# Learning rate adjustment
scheduler.step(val_loss)
scheduler.step(val_loss)
Total_Epoch = epoch + 1
return self.Model, train_losses, val_losses, train_accuracies, val_accuracies, Total_Epoch
else: # If no early stopping
Total_Epoch = self.Epoch
# Store fold results
all_fold_train_losses.append(train_losses)
all_fold_val_losses.append(val_losses)
all_fold_train_accuracies.append(train_accuracies)
all_fold_val_accuracies.append(val_accuracies)
Losses = [train_losses, val_losses]
Accuracies = [train_accuracies, val_accuracies]
plot_history(Total_Epoch, Losses, Accuracies, "train" + str(fold), self.Experiment_Name) # 將訓練結果化成圖,並將化出來的圖丟出去儲存
# Aggregate results across folds
avg_train_losses = np.mean([losses[-1] for losses in all_fold_train_losses])
avg_val_losses = np.mean([losses[-1] for losses in all_fold_val_losses])
avg_train_accuracies = np.mean([acc[-1] for acc in all_fold_train_accuracies])
avg_val_accuracies = np.mean([acc[-1] for acc in all_fold_val_accuracies])
print(f"\nCross-Validation Results:")
print(f"Avg Train Loss: {avg_train_losses:.4f}, Avg Val Loss: {avg_val_losses:.4f}")
print(f"Avg Train Acc: {avg_train_accuracies:.4f}, Avg Val Acc: {avg_val_accuracies:.4f}")
File.Save_TXT_File(content = f"\nCross-Validation Results:\nAvg Train Loss: {avg_train_losses:.4f}, Avg Val Loss: {avg_val_losses:.4f}\nAvg Train Acc: {avg_train_accuracies:.4f}, Avg Val Acc: {avg_val_accuracies:.4f}\n", File_Name = "Training_Average_Result")
pass
def Evaluate_Model(self, cnn_model, Model_Name, counter):
def Evaluate_Model(self, cnn_model, Test_Dataloader):
# (Unchanged Evaluate_Model method)
cnn_model.eval()
True_Label, Predict_Label = [], []
@@ -212,8 +157,8 @@ class All_Step:
loss = 0.0
with torch.no_grad():
for images, labels in self.Test_Dataloader:
images, labels = torch.tensor(images).to(self.device), torch.tensor(labels).to(self.device)
for images, labels in Test_Dataloader:
images, labels = torch.as_tensor(images).to(self.device), torch.as_tensor(labels).to(self.device)
outputs = cnn_model(images)
Output_Values, Output_Indexs = torch.max(outputs, 1)
True_Indexs = np.argmax(labels.cpu().numpy(), 1)
@@ -224,10 +169,10 @@ class All_Step:
Predict_Label_OneHot.append(torch.tensor(outputs, dtype=torch.float32).cpu().numpy()[0])
True_Label_OneHot.append(torch.tensor(labels, dtype=torch.int).cpu().numpy()[0])
loss /= len(self.Test_Dataloader)
loss /= len(Test_Dataloader)
True_Label_OneHot = torch.tensor(True_Label_OneHot, dtype=torch.int)
Predict_Label_OneHot = torch.tensor(Predict_Label_OneHot, dtype=torch.float32)
True_Label_OneHot = torch.as_tensor(True_Label_OneHot, dtype=torch.int)
Predict_Label_OneHot = torch.as_tensor(Predict_Label_OneHot, dtype=torch.float32)
accuracy = accuracy_score(True_Label, Predict_Label)
precision = precision_score(True_Label, Predict_Label, average="macro")
@@ -235,33 +180,4 @@ class All_Step:
AUC = auroc(Predict_Label_OneHot, True_Label_OneHot, num_labels=self.Number_Of_Classes, task="multilabel", average="macro")
f1 = f1_score(True_Label, Predict_Label, average="macro")
Matrix = self.record_matrix_image(True_Label, Predict_Label, Model_Name, counter)
print(self.record_everyTime_test_result(loss, accuracy, precision, recall, AUC, f1, counter, self.Experiment_Name, Matrix)) # 紀錄當前訓練完之後的預測結果並輸出成csv檔
pass
def record_matrix_image(self, True_Labels, Predict_Labels, model_name, index):
'''劃出混淆矩陣(熱力圖)'''
# 計算混淆矩陣
matrix = confusion_matrix(True_Labels, Predict_Labels)
draw_heatmap(matrix, model_name, index) # 呼叫畫出confusion matrix的function
return matrix
def record_everyTime_test_result(self, loss, accuracy, precision, recall, auc, f, indexs, model_name, Matrix):
'''記錄我單次的訓練結果並將它輸出到檔案中'''
File = Process_File()
Dataframe = pd.DataFrame(
{
"model_name" : str(model_name),
"loss" : "{:.2f}".format(loss),
"precision" : "{:.2f}%".format(precision * 100),
"recall" : "{:.2f}%".format(recall * 100),
"accuracy" : "{:.2f}%".format(accuracy * 100),
"f" : "{:.2f}%".format(f * 100),
"AUC" : "{:.2f}%".format(auc * 100)
}, index = [indexs])
File.Save_CSV_File("train_result", Dataframe)
return Dataframe
return True_Label, Predict_Label, loss, accuracy, precision, recall, AUC, f1

View File

@@ -1,15 +1,22 @@
from torchinfo import summary
from sklearn.model_selection import KFold
from sklearn.metrics import confusion_matrix
from Training_Tools.PreProcess import Training_Precesses
from Training_Tools.PreProcess import Training_Precesses, ListDataset
from experiments.pytorch_Model import ModifiedXception
from experiments.Model_All_Step import All_Step
from Load_process.Load_Indepentend import Load_Indepentend_Data
from _validation.ValidationTheEnterData import validation_the_enter_data
from Load_process.file_processing import Process_File
from draw_tools.Grad_cam import GradCAM
from draw_tools.draw import plot_history, draw_heatmap
import numpy as np
import torch
import torch.nn as nn
import time
import pandas as pd
import datetime
class experiments():
def __init__(self, Image_Size, Model_Name, Experiment_Name, Epoch, Train_Batch_Size, tools, Number_Of_Classes, status):
@@ -50,7 +57,6 @@ class experiments():
self.experiment_name = Experiment_Name
self.epoch = Epoch
self.train_batch_size = Train_Batch_Size
self.layers = 1
self.Number_Of_Classes = Number_Of_Classes
self.Image_Size = Image_Size
@@ -72,18 +78,73 @@ class experiments():
self.test, self.test_label = self.cut_image.test, self.cut_image.test_label
PreProcess = Training_Precesses(Training_Data, Training_Label, self.test, self.test_label)
File = Process_File()
self.Training_DataLoader, self.Test_Dataloader = PreProcess.Total_Data_Combine_To_DataLoader(self.train_batch_size)
cnn_model = self.construct_model() # 呼叫讀取模型的function
print(summary(cnn_model, input_size=(int(self.train_batch_size / 2), 3, self.Image_Size, self.Image_Size)))
for name, parameters in cnn_model.named_parameters():
print(f"Layer Name: {name}, Parameters: {parameters.size()}")
# Lists to store metrics across all folds
all_fold_train_losses = []
all_fold_val_losses = []
all_fold_train_accuracies = []
all_fold_val_accuracies = []
step = All_Step(PreProcess, self.train_batch_size, cnn_model, self.epoch, self.Number_Of_Classes, self.model_name, self.experiment_name)
print("\n\n\n讀取訓練資料(70000)執行時間:%f\n\n" % (end - start))
# Define K-fold cross-validator
K_Fold = KFold(n_splits = 5, shuffle = True, random_state = 42)
# Get the underlying dataset from PreProcess_Classes_Data
training_dataset = ListDataset(data_list = PreProcess.Training_Datas, labels_list = PreProcess.Training_Labels, status = True)
step.Training_Step(self.model_name, counter)
step.Evaluate_Model(cnn_model, self.model_name, counter)
# self.Grad.process_main(cnn_model, counter, Testing_Dataset)
# K-Fold loop
for fold, (train_idx, val_idx) in enumerate(K_Fold.split(training_dataset)):
cnn_model = self.construct_model() # 呼叫讀取模型的function
print(summary(cnn_model, input_size=(int(self.train_batch_size / 2), 3, self.Image_Size, self.Image_Size)))
for name, parameters in cnn_model.named_parameters():
print(f"Layer Name: {name}, Parameters: {parameters.size()}")
TargetLayer = cnn_model.base_model.conv4.pointwise
Grad = GradCAM(cnn_model, TargetLayer)
step = All_Step(cnn_model, self.epoch, self.Number_Of_Classes, self.model_name, self.experiment_name)
print("\n\n\n讀取訓練資料(70000)執行時間:%f\n\n" % (end - start))
print(f"\nStarting Fold {fold + 1}/5")
# Create training and validation subsets for this fold
train_subset = torch.utils.data.Subset(training_dataset, train_idx)
val_subset = torch.utils.data.Subset(training_dataset, val_idx)
# Wrap subsets in DataLoaders (use same batch size as original)
batch_size = self.Training_DataLoader.batch_size
train_loader = torch.utils.data.DataLoader(train_subset, batch_size=batch_size, shuffle=True)
val_loader = torch.utils.data.DataLoader(val_subset, batch_size=batch_size, shuffle=False)
cnn_model, train_losses, val_losses, train_accuracies, val_accuracies, Total_Epoch = step.Training_Step(train_subset, train_loader, val_loader, self.model_name, fold, TargetLayer)
# Store fold results
all_fold_train_losses.append(train_losses)
all_fold_val_losses.append(val_losses)
all_fold_train_accuracies.append(train_accuracies)
all_fold_val_accuracies.append(val_accuracies)
Losses = [train_losses, val_losses]
Accuracies = [train_accuracies, val_accuracies]
plot_history(Total_Epoch, Losses, Accuracies, "train" + str(fold), self.experiment_name) # 將訓練結果化成圖,並將化出來的圖丟出去儲存
True_Label, Predict_Label, loss, accuracy, precision, recall, AUC, f1 = step.Evaluate_Model(cnn_model, self.Test_Dataloader)
Grad.Processing_Main(self.Test_Dataloader, f"../Result/GradCAM_Image/Testing/GradCAM_Image({str(datetime.date.today())})/fold-{str(fold)}/")
Matrix = self.record_matrix_image(True_Label, Predict_Label, self.model_name, counter)
print(self.record_everyTime_test_result(loss, accuracy, precision, recall, AUC, f1, counter, self.experiment_name, Matrix)) # 紀錄當前訓練完之後的預測結果並輸出成csv檔
# Aggregate results across folds
avg_train_losses = np.mean([losses[-1] for losses in all_fold_train_losses])
avg_val_losses = np.mean([losses[-1] for losses in all_fold_val_losses])
avg_train_accuracies = np.mean([acc[-1] for acc in all_fold_train_accuracies])
avg_val_accuracies = np.mean([acc[-1] for acc in all_fold_val_accuracies])
print(f"\nCross-Validation Results:")
print(f"Avg Train Loss: {avg_train_losses:.4f}, Avg Val Loss: {avg_val_losses:.4f}")
print(f"Avg Train Acc: {avg_train_accuracies:.4f}, Avg Val Acc: {avg_val_accuracies:.4f}")
File.Save_TXT_File(content = f"\nCross-Validation Results:\nAvg Train Loss: {avg_train_losses:.4f}, Avg Val Loss: {avg_val_losses:.4f}\nAvg Train Acc: {avg_train_accuracies:.4f}, Avg Val Acc: {avg_val_accuracies:.4f}\n", File_Name = "Training_Average_Result")
pass
@@ -95,4 +156,30 @@ class experiments():
cnn_model = nn.DataParallel(cnn_model)
cnn_model = cnn_model.to(self.device)
return cnn_model
return cnn_model
def record_matrix_image(self, True_Labels, Predict_Labels, model_name, index):
'''劃出混淆矩陣(熱力圖)'''
# 計算混淆矩陣
matrix = confusion_matrix(True_Labels, Predict_Labels)
draw_heatmap(matrix, model_name, index) # 呼叫畫出confusion matrix的function
return matrix
def record_everyTime_test_result(self, loss, accuracy, precision, recall, auc, f, indexs, model_name, Matrix):
'''記錄我單次的訓練結果並將它輸出到檔案中'''
File = Process_File()
Dataframe = pd.DataFrame(
{
"model_name" : str(model_name),
"loss" : "{:.2f}".format(loss),
"precision" : "{:.2f}%".format(precision * 100),
"recall" : "{:.2f}%".format(recall * 100),
"accuracy" : "{:.2f}%".format(accuracy * 100),
"f" : "{:.2f}%".format(f * 100),
"AUC" : "{:.2f}%".format(auc * 100)
}, index = [indexs])
File.Save_CSV_File("train_result", Dataframe)
return Dataframe

View File

@@ -1,82 +0,0 @@
from convolution_model_tools.convolution_2D_tools import model_2D_tool
from dense_model_tools.dense_tools import model_Dense_Layer
from all_models_tools.all_model_tools import add_Activative, add_dropout
from keras.activations import softmax, sigmoid
from keras.applications import VGG19, ResNet50, InceptionResNetV2, Xception, DenseNet169, EfficientNetV2L
def original_VGG19_model():
tools = model_2D_tool()
dense_tool = model_Dense_Layer()
vgg19 = VGG19(include_top = False, weights = "imagenet", input_shape = (120, 120, 3))
GAP = tools.add_globalAveragePooling(vgg19.output)
# flatten = tools.add_flatten(vgg19.output)
dense = dense_tool.add_dense(256, GAP)
# dense = add_Activative(dense)
dense = dense_tool.add_dense(4, dense)
dense = add_Activative(dense, softmax)
return vgg19.input, dense
def original_Resnet50_model():
tools = model_2D_tool()
dense_tool = model_Dense_Layer()
resnet50 = ResNet50(include_top = False, weights = "imagenet", input_shape = (120, 120, 3))
GAP = tools.add_globalAveragePooling(resnet50.output)
dense = dense_tool.add_dense(256, GAP)
dense = dense_tool.add_dense(4, dense)
dense = add_Activative(dense, softmax)
return resnet50, dense
def original_InceptionResNetV2_model():
tools = model_2D_tool()
dense_tool = model_Dense_Layer()
inceptionresnetv2 = InceptionResNetV2(include_top = False, weights = "imagenet", input_shape = (120, 120, 3))
flatten = tools.add_flatten(inceptionresnetv2.output)
dense = dense_tool.add_dense(256, flatten)
dense = add_Activative(dense)
dense = dense_tool.add_dense(4, dense)
dense = add_Activative(dense, softmax)
return inceptionresnetv2.input, dense
def original_Xception_model():
tools = model_2D_tool()
dense_tool = model_Dense_Layer()
xception = Xception(include_top = False, weights = "imagenet", input_shape = (150, 150, 3))
GAP = tools.add_globalAveragePooling(xception.output)
dense = dense_tool.add_dense(256, GAP)
dense = dense_tool.add_dense(4, dense)
dense = add_Activative(dense, softmax)
return xception, dense
def original_EfficientNetV2L_model():
tools = model_2D_tool()
dense_tool = model_Dense_Layer()
EfficientNet_V2L = EfficientNetV2L(include_top = False, weights = "imagenet", input_shape = (120, 120, 3))
flatten = tools.add_flatten(EfficientNet_V2L.output)
dense = dense_tool.add_dense(256, flatten)
dense = add_Activative(dense)
dense = dense_tool.add_dense(4, dense)
dense = add_Activative(dense, softmax)
return EfficientNet_V2L.input, dense
def original_DenseNet169_model():
tools = model_2D_tool()
dense_tool = model_Dense_Layer()
Densenet169 = DenseNet169(include_top = False, weights = "imagenet", input_shape = (120, 120, 3))
flatten = tools.add_flatten(Densenet169.output)
dense = dense_tool.add_dense(256, flatten)
dense = add_Activative(dense)
dense = dense_tool.add_dense(4, dense)
dense = add_Activative(dense, softmax)
return Densenet169.input, dense

View File

@@ -36,3 +36,20 @@ class ModifiedXception(nn.Module):
x = self.base_model.fc(x) # Identity layer (still [B, 2048])
output = self.custom_head(x) # Custom head processing
return output
class Model_module():
def __init__(self):
self.conv1 = nn.Conv2d(in_channels = 3, out_channels = 32, kernel_size = 3, padding = 1)
self.conv2 = nn.Conv2d(in_channels = 64, out_channels = 128, kernel_size = 3, padding = 1)
self.conv3 = nn.Conv2d(in_channels = 128, out_channels = 128, kernel_size = 3, padding = 1)
self.relu = nn.ReLU()
self.sigmoid = nn.Sigmoid()
self.max_Pool = nn.MaxPool2d(2, 2)
self.fc1 = nn.Linear()
self.fc2 = nn.Linear()
pass
def forward(self, input):
pass

View File

@@ -23,7 +23,7 @@ if __name__ == "__main__":
tool.Set_Labels()
tool.Set_Save_Roots()
Status = 1 # 決定要使用什麼資料集
Status = 2 # 決定要使用什麼資料集
Labels = tool.Get_Data_Label()
Trainig_Root, Testing_Root = tool.Get_Save_Roots(Status) # 一般的
Generator_Root = tool.Get_Generator_Save_Roots(Status)
@@ -36,7 +36,7 @@ if __name__ == "__main__":
Classification = 3 # 分類數量
Model_Name = "Xception" # 取名,告訴我我是用哪個模型(可能是預處理模型/自己設計的模型)
Experiment_Name = "Xception Skin to train Normal stomach cancer"
Experiment_Name = "Xception Skin is used RandomSampler to train ICG stomach cancer"
Epoch = 10000
Train_Batch_Size = 64
Image_Size = 256
@@ -55,7 +55,7 @@ if __name__ == "__main__":
for Run_Range in range(0, counter, 1): # 做規定次數的訓練
# 讀取資料
Data_Dict_Data = loading_data.process_main(Label_Length)
# Data_Dict_Data, Train_Size = Balance_Process(Data_Dict_Data, Labels)
Data_Dict_Data, Train_Size = Balance_Process(Data_Dict_Data, Labels)
for label in Labels:
Train_Size += len(Data_Dict_Data[label])
@@ -86,7 +86,6 @@ if __name__ == "__main__":
trains_Data_Image = image_processing.Data_Augmentation_Image(training_data) # 讀檔
Training_Data, Training_Label = image_processing.image_data_processing(trains_Data_Image, training_label) # 將讀出來的檔做正規化。降label轉成numpy array 格式
# training_data = image_processing.normalization(training_data)
# training_data = training_data.permute(0, 3, 1, 2)

View File

@@ -1926,6 +1926,43 @@
" val_subset = torch.utils.data.Subset(training_dataset, val_idx)\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Gaussian Kernel:\n",
" [[0.00134197 0.00407653 0.00794 0.00991586 0.00794 0.00407653\n",
" 0.00134197]\n",
" [0.00407653 0.01238341 0.02411958 0.03012171 0.02411958 0.01238341\n",
" 0.00407653]\n",
" [0.00794 0.02411958 0.04697853 0.05866909 0.04697853 0.02411958\n",
" 0.00794 ]\n",
" [0.00991586 0.03012171 0.05866909 0.07326883 0.05866909 0.03012171\n",
" 0.00991586]\n",
" [0.00794 0.02411958 0.04697853 0.05866909 0.04697853 0.02411958\n",
" 0.00794 ]\n",
" [0.00407653 0.01238341 0.02411958 0.03012171 0.02411958 0.01238341\n",
" 0.00407653]\n",
" [0.00134197 0.00407653 0.00794 0.00991586 0.00794 0.00407653\n",
" 0.00134197]]\n",
"Sum of kernel: 1.0\n"
]
}
],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {

View File

@@ -1,64 +0,0 @@
# import paramiko
# from scp import SCPClient
# import os
# import pexpect
# # def createSSHClient(server, port, user, password):
# # client = paramiko.SSHClient()
# # client.load_system_host_keys()
# # client.set_missing_host_key_policy(paramiko.AutoAddPolicy)
# # client.connect(server, port, user, password)
# # return client
# # ssh = createSSHClient("10.1.29.28", 31931, "root", "whitekirin")
# # # os.mkdir("Original_ResNet101V2_with_NPC_Augmentation_Image")
# # # with open("Original_ResNet101V2_with_NPC_Augmentation_Image_train3.txt", "w") as file:
# # # pass
# # with SCPClient(ssh.get_transport()) as scp:
# # scp.get("/mnt/c/張晉嘉/stomach_cancer/Original_ResNet101V2_with_NPC_Augmentation_Image_train3.txt", "/raid/whitekirin/stomach_cancer/Model_result/save_the_train_result(2024-10-05)/Original_ResNet101V2_with_NPC_Augmentation_Image_train3.txt")
# def upload(port, filename, user, ip, dst_path):
# cmdline = "scp %s -r %s %s@%s:%s" % (port, filename, user, ip, dst_path)
# try:
# child = pexpect.spawn(cmdline)
# child.expect("whitekirin109316118")
# child.sendline()
# child.expect(pexpect.EOF)
# print("file upload Finish")
# except Exception as e:
# print("upload faild: ", e)
# upload(2222, "/raid/whitekirin/stomach_cancer/Model_result/save_the_train_result(2024-10-05)", "whitekirin", "203.64.84.39", "/mnt/c/張晉嘉/stomach_cancer")
from torch.utils.data import Dataset
from torch.utils.data import Subset, DataLoader
class ListDataset(Dataset):
def __init__(self, data_list, labels_list):
self.data = data_list
self.labels = labels_list
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
sample = self.data[idx]
label = self.labels[idx]
return sample, label
# 示例數據
data_list = ["image1.jpg", "image2.jpg", "image3.jpg"]
labels_list = [0, 1, 0]
# 創建 Dataset
dataset = ListDataset(data_list, labels_list)
# 測試
# print(type(dataset[0])) # ('image1.jpg', 0)
dataloader = DataLoader(dataset = dataset, batch_size = 1, shuffle=True, num_workers = 0, pin_memory=True)
print(dataloader)