20250308 Commits: K-Fold has been finish, but sampler has some question to solve

This commit is contained in:
2025-03-07 18:35:32 +00:00
parent 3f3fa57a02
commit f78cc738fb
15 changed files with 217 additions and 481 deletions

View File

@@ -21,8 +21,8 @@ class Load_Indepentend_Data():
self.test, self.test_label = self.get_Independent_image(Test_data_root)
print("\ntest_labels有" + str(len(self.test_label)) + "筆資料\n")
self.validation, self.validation_label = self.get_Independent_image(Validation_data_root)
print("validation_labels有 " + str(len(self.validation_label)) + " 筆資料\n")
# self.validation, self.validation_label = self.get_Independent_image(Validation_data_root)
# print("validation_labels有 " + str(len(self.validation_label)) + " 筆資料\n")
def get_Independent_image(self, independent_DataRoot):
image_processing = Read_image_and_Process_image(123)

View File

@@ -0,0 +1,53 @@
from torch.utils.data import Dataset, DataLoader, RandomSampler
import torchvision.transforms as transforms
import torch
class ListDataset(Dataset):
def __init__(self, data_list, labels_list, status):
self.data = data_list
self.labels = labels_list
self.status = status
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
sample = self.data[idx]
if self.status:
from Image_Process.Image_Generator import Image_generator
ImageGenerator = Image_generator("", "", 12)
Transform = ImageGenerator.Generator_Content(5)
sample = Transform(sample)
label = self.labels[idx]
return sample, label
class Training_Precesses:
def __init__(self, Training_Datas, Training_Labels, Testing_Datas, Testing_Labels):
self.Training_Datas = Training_Datas
self.Training_Labels = Training_Labels
self.Testing_Datas = Testing_Datas
self.Testing_Labels = Testing_Labels
pass
def Total_Data_Combine_To_DataLoader(self, Batch_Size):
Training_Dataset = self.Convert_Data_To_DataSet(self.Training_Datas, self.Training_Labels)
Testing_Dataset = self.Convert_Data_To_DataSet(self.Testing_Datas, self.Testing_Labels)
Training_DataLoader = DataLoader(dataset = Training_Dataset, batch_size = Batch_Size, num_workers = 0, pin_memory=True, shuffle = True)
Testing_DataLoader = DataLoader(dataset = Testing_Dataset, batch_size = 1, num_workers = 0, pin_memory=True, shuffle = True)
return Training_DataLoader, Testing_DataLoader
def Convert_Data_To_DataSet(self, Datas : list, Labels : list, status : bool = True):
seed = 42 # 設定任意整數作為種子
# 產生隨機種子產生器
generator = torch.Generator()
generator.manual_seed(seed)
# 創建 Dataset
list_dataset = ListDataset(Datas, Labels, status)
# sampler = RandomSampler(list_dataset, generator = generator) # 創建Sampler
return list_dataset

View File

@@ -1,30 +1,8 @@
import pandas as pd
from torch.nn import functional
import torch
from torch.utils.data import Dataset, DataLoader, RandomSampler
import torchvision.transforms as transforms
class ListDataset(Dataset):
def __init__(self, data_list, labels_list, status):
self.data = data_list
self.labels = labels_list
self.status = status
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
sample = self.data[idx]
if self.status:
from Image_Process.Image_Generator import Image_generator
ImageGenerator = Image_generator("", "", 12)
Transform = ImageGenerator.Generator_Content(5)
sample = Transform(sample)
label = self.labels[idx]
return sample, label
class Tool:
def __init__(self) -> None:
self.__ICG_Training_Root = ""
@@ -84,8 +62,8 @@ class Tool:
def Get_Save_Roots(self, choose):
'''回傳結果為Train, test, validation
choose = 1 => 取ICG Label
else => 取Normal Label
choose = 1 => 取白光 Label
else => 取濾光 Label
若choose != 1 || choose != 2 => 會回傳四個結果
'''
@@ -106,16 +84,4 @@ class Tool:
return self.__Comprehensive_Generator_Root
def Get_OneHot_Encording_Label(self):
return self.__OneHot_Encording
def Convert_Data_To_DataSet_And_Put_To_Dataloader(self, Datas : list, Labels : list, Batch_Size : int, status : bool = True):
seed = 42 # 設定任意整數作為種子
# 產生隨機種子產生器
generator = torch.Generator()
generator.manual_seed(seed)
# 創建 Dataset
list_dataset = ListDataset(Datas, Labels, status)
# sampler = RandomSampler(list_dataset, generator = generator) # 創建Sampler
return DataLoader(dataset = list_dataset, batch_size = Batch_Size, num_workers = 0, pin_memory=True, shuffle = True)
return self.__OneHot_Encording

Binary file not shown.

View File

@@ -1,6 +1,7 @@
from tqdm import tqdm
import torch
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score
from sklearn.model_selection import KFold
from torchmetrics.functional import auroc
import torch.optim as optim
import numpy as np
@@ -8,14 +9,14 @@ from all_models_tools.all_model_tools import call_back
from Model_Loss.Loss import Entropy_Loss
from merge_class.merge import merge
from draw_tools.Grad_cam import GradCAM
from torch.utils.data import Subset, DataLoader
import time
class All_Step:
def __init__(self, Training_Data_And_Label, Test_Data_And_Label, Validation_Data_And_Label, Model, Epoch, Number_Of_Classes, Model_Name):
self.Training_Data_And_Label = Training_Data_And_Label
self.Test_Data_And_Label = Test_Data_And_Label
self.Validation_Data_And_Label = Validation_Data_And_Label
def __init__(self, PreProcess_Classes_Data, Batch, Model, Epoch, Number_Of_Classes, Model_Name):
self.PreProcess_Classes_Data = PreProcess_Classes_Data
self.Training_DataLoader, self.Test_Dataloader = self.PreProcess_Classes_Data.Total_Data_Combine_To_DataLoader(Batch)
self.Model = Model
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
@@ -40,6 +41,8 @@ class All_Step:
val_accuracies = []
Total_Epoch = 0
K_Flod = KFold(n_splits = 5, shuffle = True, random_state = 42)
for epoch in range(self.Epoch): # 訓練迴圈
self.Model.train() # 開始訓練
running_loss = 0.0
@@ -49,94 +52,103 @@ class All_Step:
# 計算每個 epoch 的起始時間
start_time = time.time()
total_samples = len(self.Training_Data_And_Label)
total_samples = len(self.Training_DataLoader)
train_subset = ""
val_subset = ""
epoch_iterator = tqdm(self.Training_Data_And_Label, desc=f"Epoch [{epoch}/{self.Epoch}]")
for fold, (train_idx, vali_idx) in enumerate( K_Flod.split(self.PreProcess_Classes_Data.Training_Datas)):
# Create training and validation subsets for this fold
train_subset = Subset(self.Training_DataLoader, train_idx)
val_subset = Subset(self.Training_DataLoader, vali_idx)
for inputs, labels in epoch_iterator:
inputs, labels = torch.as_tensor(inputs).to(self.device), torch.as_tensor(labels).to(self.device)
Training_Data = DataLoader(train_subset, self.Training_DataLoader.batch_size, num_workers = 0, pin_memory=True, shuffle = True)
Optimizer.zero_grad()
outputs = self.Model(inputs)
loss = criterion(outputs, labels)
loss.backward()
Optimizer.step()
running_loss += loss.item()
epoch_iterator = tqdm(Training_Data, desc=f"Epoch [{epoch}/{self.Epoch}]")
# 收集訓練預測和標籤
Output_Values, Output_Indexs = torch.max(outputs, dim = 1)
True_Indexs = np.argmax(labels.cpu().numpy(), 1)
all_train_preds.append(Output_Indexs.cpu().numpy())
all_train_labels.append(True_Indexs)
processed_samples += len(inputs)
# 計算當前進度
progress = (processed_samples / total_samples) * 100
# 計算經過時間和剩餘時間
elapsed_time = time.time() - start_time
iterations_per_second = processed_samples / elapsed_time if elapsed_time > 0 else 0
eta = (total_samples - processed_samples) / iterations_per_second if iterations_per_second > 0 else 0
time_str = f"{int(elapsed_time//60):02d}:{int(elapsed_time%60):02d}<{int(eta//60):02d}:{int(eta%60):02d}"
# 計算當前批次的精確度(這裡需要根據你的具體需求調整)
batch_accuracy = (Output_Indexs.cpu().numpy() == True_Indexs).mean()
# 更新進度條顯示
epoch_iterator.set_description(f"Epoch [{epoch}/{self.Epoch}]")
epoch_iterator.set_postfix_str(
f"{processed_samples}/{total_samples} [{time_str}, {iterations_per_second:.2f}it/s, " +
f"acc={batch_accuracy:.3f}, loss={loss.item():.3f}, ]"
)
epoch_iterator.close()
all_train_preds = Merge_Function.merge_data_main(all_train_preds, 0, len(all_train_preds))
all_train_labels = Merge_Function.merge_data_main(all_train_labels, 0, len(all_train_labels))
Training_Loss = running_loss / len(self.Training_Data_And_Label)
train_accuracy = accuracy_score(all_train_labels, all_train_preds)
train_losses.append(Training_Loss)
train_accuracies.append(train_accuracy)
self.Model.eval()
val_loss = 0.0
all_val_preds = []
all_val_labels = []
with torch.no_grad():
for inputs, labels in self.Validation_Data_And_Label:
for inputs, labels in epoch_iterator:
inputs, labels = torch.as_tensor(inputs).to(self.device), torch.as_tensor(labels).to(self.device)
Optimizer.zero_grad()
outputs = self.Model(inputs)
loss = criterion(outputs, labels)
val_loss += loss.item()
loss.backward()
Optimizer.step()
running_loss += loss.item()
# 收集訓練預測和標籤
Output_Values, Output_Indexs = torch.max(outputs, dim = 1)
True_Indexs = np.argmax(labels.cpu().numpy(), 1)
all_train_preds.append(Output_Indexs.cpu().numpy())
all_train_labels.append(True_Indexs)
all_val_preds.append(Output_Indexs.cpu().numpy())
all_val_labels.append(True_Indexs)
processed_samples += len(inputs)
val_loss /= len(self.Validation_Data_And_Label)
val_accuracy = accuracy_score(all_val_labels, all_val_preds)
# 計算當前進度
progress = (processed_samples / total_samples) * 100
# 計算經過時間和剩餘時間
elapsed_time = time.time() - start_time
iterations_per_second = processed_samples / elapsed_time if elapsed_time > 0 else 0
eta = (total_samples - processed_samples) / iterations_per_second if iterations_per_second > 0 else 0
time_str = f"{int(elapsed_time//60):02d}:{int(elapsed_time%60):02d}<{int(eta//60):02d}:{int(eta%60):02d}"
val_losses.append(val_loss)
val_accuracies.append(val_accuracy)
# print(f"Val_loss: {val_loss:.4f}, Val_accuracy: {val_accuracy:0.2f}\n")
# 計算當前批次的精確度(這裡需要根據你的具體需求調整)
batch_accuracy = (Output_Indexs.cpu().numpy() == True_Indexs).mean()
early_stopping(val_loss, self.Model, model_path)
if early_stopping.early_stop:
print("Early stopping triggered. Training stopped.")
Total_Epoch = epoch
break
# 更新進度條顯示
epoch_iterator.set_description(f"Epoch [{epoch}/{self.Epoch}]")
epoch_iterator.set_postfix_str(
f"{processed_samples}/{total_samples} [{time_str}, {iterations_per_second:.2f}it/s, " +
f"acc={batch_accuracy:.3f}, loss={loss.item():.3f}, ]"
)
# 學習率調整
scheduler.step(val_loss)
epoch_iterator.close()
all_train_preds = Merge_Function.merge_data_main(all_train_preds, 0, len(all_train_preds))
all_train_labels = Merge_Function.merge_data_main(all_train_labels, 0, len(all_train_labels))
Training_Loss = running_loss / len(self.Training_DataLoader)
train_accuracy = accuracy_score(all_train_labels, all_train_preds)
train_losses.append(Training_Loss)
train_accuracies.append(train_accuracy)
self.Model.eval()
val_loss = 0.0
all_val_preds = []
all_val_labels = []
with torch.no_grad():
for inputs, labels in val_subset:
inputs, labels = torch.as_tensor(inputs).to(self.device), torch.as_tensor(labels).to(self.device)
outputs = self.Model(inputs)
loss = criterion(outputs, labels)
val_loss += loss.item()
# 收集訓練預測和標籤
Output_Values, Output_Indexs = torch.max(outputs, dim = 1)
True_Indexs = np.argmax(labels.cpu().numpy(), 1)
all_val_preds.append(Output_Indexs.cpu().numpy())
all_val_labels.append(True_Indexs)
val_loss /= len(val_subset)
val_accuracy = accuracy_score(all_val_labels, all_val_preds)
val_losses.append(val_loss)
val_accuracies.append(val_accuracy)
# print(f"Val_loss: {val_loss:.4f}, Val_accuracy: {val_accuracy:0.2f}\n")
early_stopping(val_loss, self.Model, model_path)
if early_stopping.early_stop:
print("Early stopping triggered. Training stopped.")
Total_Epoch = epoch
break
# 學習率調整
scheduler.step(val_loss)
return train_losses, val_losses, train_accuracies, val_accuracies, Total_Epoch
@@ -148,7 +160,7 @@ class All_Step:
loss = 0.0
with torch.no_grad():
for images, labels in self.Test_Data_And_Label:
for images, labels in self.Test_Dataloader:
images, labels = torch.tensor(images).to(self.device), torch.tensor(labels).to(self.device)
outputs = cnn_model(images)
@@ -163,13 +175,13 @@ class All_Step:
Predict_Label_OneHot.append(torch.tensor(outputs, dtype = torch.float32).cpu().numpy()[0])
True_Label_OneHot.append(torch.tensor(labels, dtype = torch.int).cpu().numpy()[0])
# 創建 GradCAM 實例
Layers = cnn_model.base_model.body.conv4.pointwise
grad_cam = GradCAM(cnn_model, target_layer="base_model")
# 可視化 Grad-CAM
grad_cam.visualize(outputs, images, target_class = 3, File_Name = counter, model_name = self.Model_Name)
# # 創建 GradCAM 實例
# Layers = cnn_model.base_model.body.conv4.pointwise
# grad_cam = GradCAM(cnn_model, target_layer="base_model")
# # 可視化 Grad-CAM
# grad_cam.visualize(outputs, images, target_class = 3, File_Name = counter, model_name = self.Model_Name)
loss /= len(self.Test_Data_And_Label)
loss /= len(self.Test_Dataloader)
True_Label_OneHot = torch.tensor(True_Label_OneHot, dtype = torch.int)
Predict_Label_OneHot = torch.tensor(Predict_Label_OneHot, dtype = torch.float32)

View File

@@ -5,6 +5,7 @@ from Load_process.file_processing import Process_File
from sklearn.metrics import confusion_matrix
from experiments.pytorch_Model import ModifiedXception
from experiments.Model_All_Step import All_Step
from Training_Tools.PreProcess import Training_Precesses
from torchinfo import summary
import pandas as pd
import numpy as np
@@ -13,7 +14,7 @@ import torch.nn as nn
import time
class experiments():
def __init__(self, Image_Size, Model_Name, Experiment_Name, Generator_Batch_Size, Epoch, Train_Batch_Size, tools, Number_Of_Classes, status):
def __init__(self, Image_Size, Model_Name, Experiment_Name, Epoch, Train_Batch_Size, tools, Number_Of_Classes, status):
'''
# 實驗物件
@@ -49,7 +50,6 @@ class experiments():
self.model_name = Model_Name # 取名,告訴我我是用哪個模型(可能是預處理模型/自己設計的模型)
self.experiment_name = Experiment_Name
self.generator_batch_size = Generator_Batch_Size
self.epoch = Epoch
self.train_batch_size = Train_Batch_Size
self.layers = 1
@@ -62,7 +62,7 @@ class experiments():
pass
def processing_main(self, Training_Dataset, counter):
def processing_main(self, Training_Data, Training_Label, counter):
Train, Test, Validation = self.Topic_Tool.Get_Save_Roots(self.Status) # 要換不同資料集就要改
start = time.time()
@@ -72,22 +72,15 @@ class experiments():
# 將處理好的test Data 與 Validation Data 丟給這個物件的變數
self.test, self.test_label = self.cut_image.test, self.cut_image.test_label
self.validation, self.validation_label = self.cut_image.validation, self.cut_image.validation_label
Testing_Dataset = self.Topic_Tool.Convert_Data_To_DataSet_And_Put_To_Dataloader(self.test, self.test_label, 1)
Validation_Dataset = self.Topic_Tool.Convert_Data_To_DataSet_And_Put_To_Dataloader(self.validation, self.validation_label, 1)
PreProcess = Training_Precesses(Training_Data, Training_Label, self.test, self.test_label)
cnn_model = self.construct_model() # 呼叫讀取模型的function
print(summary(cnn_model, input_size=(int(self.train_batch_size / 2), 3, self.Image_Size, self.Image_Size)))
for name, parameters in cnn_model.named_parameters():
print(f"Layer Name: {name}, Parameters: {parameters.size()}")
step = All_Step(Training_Dataset, Testing_Dataset, Validation_Dataset, cnn_model, self.epoch, self.Number_Of_Classes, self.model_name)
# model_dir = '../save_the_best_model/Topic/Remove background with Normal image/best_model( 2023-10-17 )-2.h5' # 這是一個儲存模型權重的路徑,每一個模型都有一個自己權重儲存的檔
# if os.path.exists(model_dir): # 如果這個檔案存在
# cnn_model.load_weights(model_dir) # 將模型權重讀出來
# print("讀出權重\n")
step = All_Step(PreProcess, self.train_batch_size, cnn_model, self.epoch, self.Number_Of_Classes, self.model_name)
print("\n\n\n讀取訓練資料(70000)執行時間:%f\n\n" % (end - start))
train_losses, val_losses, train_accuracies, val_accuracies, Epoch = step.Training_Step(self.model_name, counter)

View File

@@ -10,41 +10,33 @@ class ModifiedXception(nn.Module):
def __init__(self, num_classes):
super(ModifiedXception, self).__init__()
# 加載 Xception 預訓練模型,去掉最後一層 (fc 層)
# Load Xception pre-trained model (full model, not just features)
self.base_model = timm.create_model(
'xception',
pretrained=True,
features_only=True, # 只保留特徵提取部分
out_indices=[3] # 選擇特徵層索引(根據模型結構)
)
'xception',
pretrained=True,
drop_rate=0.0, # Optional: adjust dropout if needed
)
# 自定義分類頭
# Replace the default global pooling with AdaptiveAvgPool2d
self.base_model.global_pool = nn.AdaptiveAvgPool2d(output_size=1) # Output size of 1x1 spatially
# Replace the final fully connected layer with Identity to get features
self.base_model.fc = nn.Identity() # Output will be 2048 (Xception's default feature size)
# Custom head: Linear from 2048 to 1370, additional 1370 layer, then to num_classes
self.custom_head = nn.Sequential(
nn.AdaptiveAvgPool2d(1), # Global Average Pooling,
nn.Flatten(),
nn.Linear(728, 368), # Xception 輸出特徵維度為2048
nn.ReLU(), # 可選激活函數
nn.Linear(368, num_classes),
nn.Sigmoid()
nn.Linear(2048, 1025), # From Xceptions 2048 features to 1370
nn.ReLU(), # Activation
nn.Dropout(0.6), # Dropout for regularization
nn.Linear(1025, num_classes), # Final output layer
nn.Sigmoid() # Sigmoid for binary/multi-label classification
)
# self.base_model.fc = nn.Identity() # 移除原來的 fully connected 層
# # 新增全局平均池化層、隱藏層和輸出層
# self.global_avg_pool = nn.AdaptiveAvgPool2d(1) # 全局平均池化
# self.hidden_layer = nn.Linear(2048, 1370) # 隱藏層,輸入大小取決於 Xception 的輸出大小
# self.output_layer = nn.Linear(1370, 2) # 輸出層,依據分類數目設定
# # 激活函數與 dropout
# self.relu = nn.ReLU()
# self.dropout = nn.Dropout(0.6)
def forward(self, x):
x = self.base_model(x) # Xception 主體
x = x[0]
output = self.custom_head(x)
# x = self.global_avg_pool(x) # 全局平均池化
# x = self.relu(self.hidden_layer(x)) # 隱藏層 + ReLU
# x = self.dropout(x) # Dropout
# x = self.output_layer(x) # 輸出層
# Pass through the base Xception model (up to global pooling)
x = self.base_model.forward_features(x) # Get feature maps
x = self.base_model.global_pool(x) # Apply AdaptiveAvgPool2d (output: [B, 2048, 1, 1])
x = x.flatten(1) # Flatten to [B, 2048]
x = self.base_model.fc(x) # Identity layer (still [B, 2048])
output = self.custom_head(x) # Custom head processing
return output

View File

@@ -1,298 +0,0 @@
from convolution_model_tools.convolution_2D_tools import model_2D_tool
from dense_model_tools.dense_tools import model_Dense_Layer
from all_models_tools.all_model_tools import add_optimizers_function, add_Activative, add_dropout, call_back
from keras.activations import softmax, sigmoid
from keras.applications import VGG19, ResNet50, NASNetLarge, DenseNet201, Xception
from keras.applications.efficientnet_v2 import EfficientNetV2L
from keras.layers import BatchNormalization, Flatten, GlobalAveragePooling2D, MaxPooling2D, Dense, Conv2D, Dropout, TimeDistributed, LSTM, Input
from keras import regularizers
def one_layer_cnn_model():
tools = model_2D_tool()
dense_tool = model_Dense_Layer()
img_Input = tools.add_2D_input()
x = tools.add_Convolution2D(img_Input, 32)
x = add_Activative(x)
x = tools.add_MaxPooling(x)
x = tools.add_Convolution2D(x, 64)
x = add_Activative(x)
x = tools.add_MaxPooling(x)
flatter = tools.add_flatten(x)
dense = dense_tool.add_dense(64, flatter)
dense = add_Activative(dense)
dense = dense_tool.add_dense(32, dense)
dense = add_Activative(dense)
dense = dense_tool.add_dense(7, dense)
dense = add_Activative(dense, softmax)
return img_Input, dense
def find_example_cnn_model():
tools = model_2D_tool()
dense_tool = model_Dense_Layer()
img_Input = tools.add_2D_input()
x = tools.add_Convolution2D(img_Input, 16)
x = add_Activative(x)
x = add_dropout(x, 0.25)
x = tools.add_Convolution2D(x, 32)
x = add_Activative(x)
x = add_dropout(x, 0.25)
x = tools.add_MaxPooling(x)
x = tools.add_Convolution2D(x, 64)
x = add_Activative(x)
x = add_dropout(x, 0.25)
x = tools.add_MaxPooling(x)
x = tools.add_Convolution2D(x, 128)
x = add_Activative(x)
x = add_dropout(x, 0.25)
x = tools.add_MaxPooling(x)
flatter = tools.add_flatten(x)
dense = dense_tool.add_dense(64, flatter)
dense = add_Activative(dense)
dense = add_dropout(dense, 0.25)
dense = dense_tool.add_dense(7, dense)
dense = add_Activative(dense, sigmoid)
return img_Input, dense
def change_example_cnn_model():
tools = model_2D_tool()
dense_tool = model_Dense_Layer()
img_Input = tools.add_2D_input()
x = tools.add_Convolution2D(img_Input, 16)
x = add_Activative(x)
x = tools.add_batchnomlization(x)
x = tools.add_Convolution2D(x, 32)
x = add_Activative(x)
x = tools.add_batchnomlization(x)
x = tools.add_MaxPooling(x)
x = tools.add_Convolution2D(x, 64)
x = add_Activative(x)
x = tools.add_batchnomlization(x)
x = tools.add_MaxPooling(x)
x = tools.add_Convolution2D(x, 128)
x = add_Activative(x)
x = tools.add_batchnomlization(x)
x = tools.add_MaxPooling(x)
flatter = tools.add_flatten(x)
dense = dense_tool.add_dense(64, flatter)
dense = add_Activative(dense)
dense = add_dropout(dense, 0.3)
dense = dense_tool.add_dense(7, dense)
dense = add_Activative(dense, softmax)
return img_Input, dense
def two_convolution_cnn_model():
tools = model_2D_tool()
dense_tool = model_Dense_Layer()
img_Input = tools.add_2D_input()
x = tools.add_two_floors_convolution2D(img_Input, 32)
x = tools.add_MaxPooling(x)
x = tools.add_two_floors_convolution2D(x, 64)
x = tools.add_MaxPooling(x)
flatter = tools.add_flatten(x)
dense = dense_tool.add_dense(64, flatter)
dense = add_Activative(dense)
dense = dense_tool.add_dense(32, dense)
dense = add_Activative(dense)
dense = dense_tool.add_dense(7, dense)
dense = add_Activative(dense, softmax)
return img_Input, dense
def VGG19_model():
tools = model_2D_tool()
dense_tool = model_Dense_Layer()
vgg19 = VGG19(include_top = False, weights = "imagenet", input_shape = (120, 120, 3))
flatten = tools.add_flatten(vgg19.output)
dense = dense_tool.add_dense(64, flatten)
dense = add_Activative(dense)
dense = dense_tool.add_dense(7, dense)
dense = add_Activative(dense, softmax)
return vgg19, dense
def Resnet50_model():
tools = model_2D_tool()
dense_tool = model_Dense_Layer()
vgg19 = ResNet50(include_top = False, weights = "imagenet", input_shape = (120, 120, 3))
flatten = tools.add_flatten(vgg19.output)
dense = dense_tool.add_dense(64, flatten)
dense = add_Activative(dense)
dense = dense_tool.add_dense(7, dense)
dense = add_Activative(dense, softmax)
return vgg19, dense
def DenseNet201_model():
tools = model_2D_tool()
dense_tool = model_Dense_Layer()
Densenet201 = DenseNet201(include_top = False, weights = "imagenet", input_shape = (120, 120, 3))
flatten = tools.add_flatten(Densenet201.output)
dense = dense_tool.add_dense(64, flatten)
dense = add_Activative(dense)
dense = dense_tool.add_dense(7, dense)
dense = add_Activative(dense, softmax)
return Densenet201, dense
def Xception_model():
xception = Xception(include_top = False, weights = "imagenet", input_shape = (120, 120, 3))
flatten = Flatten()(xception.output)
dense = Dense(units = 64, activation = "relu")(flatten)
dense = Dense(units = 7, activation = "softmax")(dense)
return xception, dense
def cnn_LSTM():
head = Input(shape = (150, 150, 3))
inputs = Conv2D(filters = 64, strides = 1, kernel_size = (3, 3), padding = "same", activation = "relu")(head)
inputs = Conv2D(filters = 64, strides = 1, kernel_size = (3, 3), padding = "same", activation = "relu")(inputs)
inputs = MaxPooling2D(strides = 2, pool_size = (2, 2))(inputs)
inputs = Dropout(0.25)(inputs)
inputs = Conv2D(filters = 128, strides = 1, kernel_size = (3, 3), padding = "same", activation = "relu")(inputs)
inputs = Conv2D(filters = 128, strides = 1, kernel_size = (3, 3), padding = "same", activation = "relu")(inputs)
inputs = MaxPooling2D(strides = 2, pool_size = (2, 2))(inputs)
inputs = Dropout(0.25)(inputs)
inputs = Conv2D(filters = 256, strides = 1, kernel_size = (3, 3), padding = "same", activation = "relu")(inputs)
inputs = Conv2D(filters = 256, strides = 1, kernel_size = (3, 3), padding = "same", activation = "relu")(inputs)
inputs = MaxPooling2D(strides = 2, pool_size = (2, 2))(inputs)
inputs = Dropout(0.25)(inputs)
inputs = Conv2D(filters = 512, strides = 1, kernel_size = (3, 3), padding = "same", activation = "relu")(inputs)
inputs = Conv2D(filters = 512, strides = 1, kernel_size = (3, 3), padding = "same", activation = "relu")(inputs)
inputs = Conv2D(filters = 512, strides = 1, kernel_size = (3, 3), padding = "same", activation = "relu")(inputs)
inputs = MaxPooling2D(strides = 2, pool_size = (2, 2))(inputs)
inputs = Dropout(0.25)(inputs)
inputs = Conv2D(filters = 512, strides = 1, kernel_size = (3, 3), padding = "same", activation = "relu")(inputs)
inputs = Conv2D(filters = 512, strides = 1, kernel_size = (3, 3), padding = "same", activation = "relu")(inputs)
inputs = Conv2D(filters = 512, strides = 1, kernel_size = (3, 3), padding = "same", activation = "relu")(inputs)
inputs = MaxPooling2D(strides = 2, pool_size = (2, 2))(inputs)
inputs = Dropout(0.25)(inputs)
inputs = TimeDistributed(Flatten())(inputs)
inputs = LSTM(units = 49)(inputs)
inputs = Dense(units = 64)(inputs)
output = Dense(units = 7, activation = "softmax")(inputs)
return head, output
def add_regularizers_L1(): # 比較正規化
tools = model_2D_tool()
dense_tool = model_Dense_Layer()
Resnet50 = ResNet50(include_top = False, weights = "imagenet", input_shape = (120, 120, 3))
flatten = tools.add_flatten(Resnet50.output)
dense = dense_tool.add_regularizer_dense(64, flatten, regularizers.L1())
dense = add_Activative(dense)
dense = dense_tool.add_dense(7, dense)
dense = add_Activative(dense, softmax)
return Resnet50, dense
def add_regularizers_L2(): # 比較正規化
tools = model_2D_tool()
dense_tool = model_Dense_Layer()
Resnet50 = ResNet50(include_top = False, weights = "imagenet", input_shape = (120, 120, 3))
flatten = tools.add_flatten(Resnet50.output)
dense = dense_tool.add_regularizer_dense(64, flatten, regularizers.L2())
dense = add_Activative(dense)
dense = dense_tool.add_dense(7, dense)
dense = add_Activative(dense, softmax)
return Resnet50, dense
def add_regularizers_L1L2(): # 比較正規化
tools = model_2D_tool()
dense_tool = model_Dense_Layer()
Resnet50 = ResNet50(include_top = False, weights = "imagenet", input_shape = (120, 120, 3))
flatten = tools.add_flatten(Resnet50.output)
dense = dense_tool.add_regularizer_dense(64, flatten, regularizers.L1L2())
dense = add_Activative(dense)
dense = dense_tool.add_dense(7, dense)
dense = add_Activative(dense, softmax)
return Resnet50, dense
def add_layers1_L2(Dense_layers): # 比較正規化
tools = model_2D_tool()
dense_tool = model_Dense_Layer()
layers = 32
Densenet201 = DenseNet201(include_top = False, weights = "imagenet", input_shape = (120, 120, 3))
flatten = tools.add_flatten(Densenet201.output)
for layer in range(Dense_layers):
dense = dense_tool.add_regularizer_kernel_dense(unit = layers, input_data = flatten, regularizer = regularizers.L2())
dense = add_Activative(dense)
layers *= 2
dense = dense_tool.add_dense(7, dense)
dense = add_Activative(dense, softmax)
return Densenet201, dense
def add_layers_another_L2(Dense_layers, layers): # 比較正規化
tools = model_2D_tool()
dense_tool = model_Dense_Layer()
Densenet201 = DenseNet201(include_top = False, weights = "imagenet", input_shape = (120, 120, 3))
flatten = tools.add_flatten(Densenet201.output)
for layer in range(Dense_layers):
dense = dense_tool.add_regularizer_dense(unit = layers, input_data = flatten, regularizer = regularizers.L2())
dense = add_Activative(dense)
layers /= 2
dense = dense_tool.add_dense(7, dense)
dense = add_Activative(dense, softmax)
return Densenet201, dense
def add_bias_regularizers(): # 比較正規化
tools = model_2D_tool()
dense_tool = model_Dense_Layer()
Resnet50 = ResNet50(include_top = False, weights = "imagenet", input_shape = (120, 120, 3))
flatten = tools.add_flatten(Resnet50.output)
dense = dense_tool.add_regularizer_bias_dense(64, flatten, regularizers.L2())
dense = add_Activative(dense)
dense = dense_tool.add_dense(7, dense)
dense = add_Activative(dense, softmax)
return Resnet50, dense

22
main.py
View File

@@ -8,7 +8,6 @@ from Calculate_Process.Calculate import Calculate
from merge_class.merge import merge
import time
import torch
import os
if __name__ == "__main__":
# 測試GPU是否可用
@@ -23,7 +22,7 @@ if __name__ == "__main__":
tool.Set_Labels()
tool.Set_Save_Roots()
Status = 2 # 決定要使用什麼資料集
Status = 1 # 決定要使用什麼資料集
Labels = tool.Get_Data_Label()
Trainig_Root, Testing_Root, Validation_Root = tool.Get_Save_Roots(Status) # 一般的
Generator_Root = tool.Get_Generator_Save_Roots(Status)
@@ -37,14 +36,13 @@ if __name__ == "__main__":
Model_Name = "Xception" # 取名,告訴我我是用哪個模型(可能是預處理模型/自己設計的模型)
Experiment_Name = "Xception Skin to train Normal stomach cancer"
Generator_Batch_Size = 50
Epoch = 10000
Train_Batch_Size = 50
Train_Batch_Size = 64
Image_Size = 256
Prepare = Load_Data_Prepare()
loading_data = Load_ImageGenerator(Trainig_Root, Testing_Root, Validation_Root, Generator_Root, Labels, Image_Size)
experiment = experiments(Image_Size, Model_Name, Experiment_Name, Generator_Batch_Size, Epoch, Train_Batch_Size, tool, Classification, Status)
experiment = experiments(Image_Size, Model_Name, Experiment_Name, Epoch, Train_Batch_Size, tool, Classification, Status)
image_processing = Read_image_and_Process_image(Image_Size)
Merge = merge()
Calculate_Tool = Calculate()
@@ -81,17 +79,7 @@ if __name__ == "__main__":
start = time.time()
trains_Data_Image = image_processing.Data_Augmentation_Image(training_data) # 讀檔
# total_trains, train_label = shuffle_data(trains_Data_Image, training_label) # 將資料打亂
# training_data = list(total_trains) # 轉換資料型態
training_data, train_label = image_processing.image_data_processing(trains_Data_Image, training_label) # 將讀出來的檔做正規化。降label轉成numpy array 格式
Training_Dataset = tool.Convert_Data_To_DataSet_And_Put_To_Dataloader(training_data, train_label, Train_Batch_Size)
# 查看Dataloader的Shape
for idx, data in enumerate(Training_Dataset):
datas = data[0]
print(f"Shape: {datas.shape}")
Training_Data, Training_Label = image_processing.image_data_processing(trains_Data_Image, training_label) # 將讀出來的檔做正規化。降label轉成numpy array 格式
# training_data = image_processing.normalization(training_data)
@@ -100,7 +88,7 @@ if __name__ == "__main__":
end = time.time()
print("\n\n\n讀取訓練資料(70000)執行時間:%f\n\n" % (end - start))
loss, accuracy, precision, recall, AUC, f = experiment.processing_main(Training_Dataset, Run_Range) # 執行訓練方法
loss, accuracy, precision, recall, AUC, f = experiment.processing_main(Training_Data, Training_Label, Run_Range) # 執行訓練方法
Calculate_Tool.Append_numbers(loss, accuracy, precision, recall, AUC, f)
print("實驗結果")

View File

@@ -1857,6 +1857,36 @@
"model.base_model.body.conv4.pointwise"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[(array([0, 3, 4, 5, 6, 7]), array([1, 2])), (array([0, 1, 2, 4, 6, 7]), array([3, 5])), (array([1, 2, 3, 5, 6, 7]), array([0, 4])), (array([0, 1, 2, 3, 4, 5, 6]), array([7])), (array([0, 1, 2, 3, 4, 5, 7]), array([6]))]\n",
"[0 1 2 3 4 7] [5 6]\n",
"[0 1 2 5 6 7] [3 4]\n",
"[1 2 3 4 5 6] [0 7]\n",
"[0 2 3 4 5 6 7] [1]\n",
"[0 1 3 4 5 6 7] [2]\n"
]
}
],
"source": [
"from sklearn.model_selection import KFold\n",
"\n",
"k = KFold(n_splits = 5, shuffle = True)\n",
"a = [1, 2, 3, 4 ,5, 6,7, 8]\n",
"\n",
"print(list(k.split(a)))\n",
"\n",
"for d, b in k.split(a):\n",
" print(d, b)"
]
},
{
"cell_type": "code",
"execution_count": null,
@@ -1881,7 +1911,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.10"
"version": "3.11.11"
}
},
"nbformat": 4,