import torch import torch.nn as nn import torch.nn.functional as F import numpy as np import cv2 from PIL import Image import matplotlib.pyplot as plt import datetime from Load_process.file_processing import Process_File class GradCAM: def __init__(self, model, target_layer): self.model = model # 若為 DataParallel,取出真正的 backbone self.backbone = model.module if isinstance(model, nn.DataParallel) else model self.target_layer = self._resolve_target_layer(target_layer) self.activations = None self.gradients = None self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') self.model.to(self.device) # Ensure model is on the correct device # Register hooks on resolved module self.target_layer.register_forward_hook(self.save_activations) # Use full backward hook if available to avoid deprecation issues if hasattr(self.target_layer, "register_full_backward_hook"): self.target_layer.register_full_backward_hook(self.save_gradients) else: self.target_layer.register_backward_hook(self.save_gradients) def _resolve_target_layer(self, target): # 支援 nn.Module / nn.Parameter / 字串路徑 if isinstance(target, nn.Module): return target if isinstance(target, torch.nn.Parameter): # 先在 backbone 參數中找到該 Parameter 的名稱 for name, param in self.backbone.named_parameters(): if param is target: # 去掉 .weight / .bias,取得父模組名稱 module_name = name.rsplit('.', 1)[0] # 先嘗試用 named_modules 快速匹配 for mod_name, mod in self.backbone.named_modules(): if mod_name == module_name: return mod # 回退為屬性遍歷 obj = self.backbone for attr in module_name.split('.'): obj = getattr(obj, attr) return obj raise AttributeError("Target parameter not found in model parameters.") if isinstance(target, str): # 允許使用字串路徑指定層,例如 'conv4.pointwise' obj = self.backbone for attr in target.split('.'): obj = getattr(obj, attr) return obj raise TypeError("target_layer must be nn.Module, nn.Parameter, or str") def Processing_Main(self, Test_Dataloader, File_Path): File = Process_File() for batch_idx, (images, labels, File_Name, File_Classes) in enumerate(Test_Dataloader): # Move data to device images = images.to(self.device, dtype=torch.float32) # [64, C, H, W] labels = labels.to(self.device, dtype=torch.float32) # [64, num_classes] # Get ground-truth class indices label_classes = torch.argmax(labels, dim=1).cpu().numpy() # [64] # Generate Grad-CAM heatmaps for the entire batch heatmaps = self.generate(images, label_classes) # Process each image in the batch for i in range(images.size(0)): # Loop over batch size (64) heatmap = heatmaps[i] # Extract heatmap for this image overlaid_image = self.overlay_heatmap(heatmap, images[i], alpha=0.5) # Create file path based on class path = f"{File_Path}/{File_Classes[i]}" File.JudgeRoot_MakeDir(path) # Save overlaid image File.Save_CV2_File(f"batch_{batch_idx}_{File_Name[i]}", path, overlaid_image) # # Save raw heatmap separately # heatmap_resized = cv2.resize(heatmap, (images[i].shape[2], images[i].shape[1]), interpolation=cv2.INTER_CUBIC) # heatmap_colored = (plt.cm.viridis(heatmap_resized)[:, :, :3] * 255).astype(np.uint8) # File.Save_CV2_File(f"batch_{batch_idx}_img_{i}_heatmap.png", path, heatmap_colored) def save_activations(self, module, input, output): self.activations = output.detach() # [64, C, H', W'] def save_gradients(self, module, grad_input, grad_output): self.gradients = grad_output[0].detach() # [64, C, H', W'] def generate(self, input_images, class_indices=None): self.model.eval() input_images.requires_grad = True # [B, C, H, W] outputs = self.model(input_images) # [B, num_classes] if class_indices is None: class_indices = torch.argmax(outputs, dim=1).cpu().numpy() self.model.zero_grad() heatmaps = [] for i in range(input_images.size(0)): self.model.zero_grad() # Backward for the specific image and class outputs[i, class_indices[i]].backward(retain_graph=True) # Compute heatmap for sample i heatmap = self._compute_heatmap(sample_index=i) heatmaps.append(heatmap) return np.stack(heatmaps) # [B, H', W'] def _compute_heatmap(self, sample_index): # Get gradients and activations for the specific sample gradients = self.gradients[sample_index] # [C, H', W'] activations = self.activations[sample_index] # [C, H', W'] # Compute weights (global average pooling of gradients) weights = torch.mean(gradients, dim=(1, 2), keepdim=True) # [C, 1, 1] # Grad-CAM: weighted sum of activations grad_cam = torch.sum(weights * activations, dim=0) # [H', W'] grad_cam = F.relu(grad_cam) grad_cam = grad_cam / (grad_cam.max() + 1e-8) # Apply Gaussian smoothing to reduce artifacts grad_cam_np = grad_cam.detach().cpu().numpy() grad_cam_np = cv2.GaussianBlur(grad_cam_np, (5, 5), 0) grad_cam_np = grad_cam_np / (grad_cam_np.max() + 1e-8) return grad_cam_np def overlay_heatmap(self, heatmap, image, alpha=0.5): # Resize heatmap to match input image spatial dimensions using INTER_CUBIC for smoother results heatmap = np.uint8(255 * heatmap) # Scale to [0, 255] heatmap = cv2.resize(heatmap, (image.shape[2], image.shape[1]), interpolation=cv2.INTER_CUBIC) # Use viridis colormap for better interpretability heatmap = plt.cm.viridis(heatmap)[:, :, :3] # Apply viridis colormap # Convert image tensor to numpy and denormalize (assuming ImageNet stats) image_np = image.detach().cpu().permute(1, 2, 0).numpy() # [H, W, C] # Ensure image is in [0, 1] range (if not already) if image_np.max() > 1.0: image_np = (image_np - image_np.min()) / (image_np.max() - image_np.min()) # Overlay heatmap on the image overlay = alpha * heatmap + (1 - alpha) * image_np overlay = np.clip(overlay, 0, 1) * 255 return overlay.astype(np.uint8) # Return uint8 for cv2 def find_last_conv_layer(model): # Traverse modules in reverse order to find the last Conv2d last_conv = None for m in model.modules(): if isinstance(m, nn.Conv2d): last_conv = m if last_conv is None: raise RuntimeError("No nn.Conv2d layer found in the model for Grad-CAM.") return last_conv def run_grad_cam(model, dataloader, output_root): # Convenience wrapper to run Grad-CAM end-to-end with your loaders device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') model.to(device) target_layer = find_last_conv_layer(model) grad = GradCAM(model, target_layer) file = Process_File() for batch_idx, (images, labels, file_names, file_classes) in enumerate(dataloader): images = images.to(device, dtype=torch.float32) labels = labels.to(device, dtype=torch.float32) label_classes = torch.argmax(labels, dim=1).cpu().numpy() heatmaps = grad.generate(images, label_classes) for i in range(images.size(0)): overlaid = grad.overlay_heatmap(heatmaps[i], images[i], alpha=0.5) out_dir = f"{output_root}/{file_classes[i]}" file.JudgeRoot_MakeDir(out_dir) file.Save_CV2_File(f"batch_{batch_idx}_{file_names[i]}", out_dir, overlaid)