from merge_class.merge import merge from Load_process.LoadData import Load_Data_Prepare, Load_Data_Tools from model_data_processing.processing import make_label_list from utils.Stomach_Config import Loading_Config class Load_Indepentend_Data(): def __init__(self, OneHot_Encording): ''' 影像切割物件 label有2類,會將其轉成one-hot-encoding的形式 [0, 1] = NPC_negative [1, 0] = NPC_positive ''' self.merge = merge() self.OneHot_Encording = OneHot_Encording pass def process_main(self, Test_data_root, Test_mask_root): self.test, self.test_label, self.test_mask = self.get_Independent_image(Test_data_root, Test_mask_root) print("\ntest_labels有" + str(len(self.test_label)) + "筆資料\n") def get_Independent_image(self, independent_DataRoot, independent_MaskRoot): Total_Size_List = [] Total_Dict_Data_Root = self.Get_Independent_data_Root(independent_DataRoot, Loading_Config["Training_Labels"], len(Loading_Config["Training_Labels"])) # 讀取測試資料集的資料 Total_Dict_Mask_Root = self.Get_Independent_data_Root(independent_MaskRoot, Loading_Config["XML_Loading_Label"], len(Loading_Config["XML_Loading_Label"])) # 讀取測試資料集的mask資料 # 將測試資料字典轉成列表,並且將其排序 Total_List_Data_Root = [] for Label in Loading_Config["Training_Labels"]: Total_List_Data_Root.append(Total_Dict_Data_Root[Label]) # 將測試資料字典轉成列表,並且將其排序 Total_List_Mask_Data_Root = [] for Label in Loading_Config["XML_Loading_Label"]: Total_List_Mask_Data_Root.append(Total_Dict_Mask_Root[Label]) classify_image, Classify_Label = [], [] i = 0 # 計算classify_image的counter,且計算總共有幾筆資料 for test_title in Total_List_Data_Root: # 藉由讀取所有路徑來進行讀檔 test_label = make_label_list(len(test_title), self.OneHot_Encording[i]) # 製作對應圖片數量的label出來+ print(Loading_Config["Training_Labels"][i] + " 有 " + str(len(test_label)) + " 筆資料 ") Total_Size_List.append(len(test_label)) classify_image.append(test_title) Classify_Label.append(test_label) i += 1 classify_Mask_image = [] i = 0 # 計算classify_image的counter,且計算總共有幾筆資料 for test_title in Total_List_Mask_Data_Root: # 藉由讀取所有路徑來進行讀檔 print(Loading_Config["XML_Loading_Label"][i] + " 有 " + str(len(test_title)) + " 筆資料 ") classify_Mask_image.append(test_title) i += 1 test = self.merge.merge_data_main(classify_image, 0, len(Loading_Config["Training_Labels"])) test_label = self.merge.merge_data_main(Classify_Label, 0, len(Loading_Config["Training_Labels"])) test_Mask = self.merge.merge_data_main(classify_Mask_image, 0, len(Loading_Config["XML_Loading_Label"])) return test, test_label, test_Mask def Get_Independent_data_Root(self, load_data_root, Dictory_Keys, Length): Prepare = Load_Data_Prepare() Load_Tool = Load_Data_Tools() Prepare.Set_Data_Content([], Length) Prepare.Set_Data_Dictionary(Dictory_Keys, Prepare.Get_Data_Content(), Length) Get_Data_Dict_Content = Prepare.Get_Data_Dict() Total_Data_Roots = Load_Tool.get_data_root(load_data_root, Get_Data_Dict_Content, Dictory_Keys) return Total_Data_Roots