from torch import nn from torch.nn import functional import torch import numpy as np class Entropy_Loss(nn.Module): def __init__(self): super(Entropy_Loss, self).__init__() def forward(self, outputs, labels): # 转换为张量并确保在同一設備上 outputs_New = torch.as_tensor(outputs, dtype=torch.float32) labels_New = torch.as_tensor(labels, dtype=torch.float32) # 標籤應該是 long 類型用於索引 loss = functional.cross_entropy(outputs_New, labels_New) return torch.as_tensor(loss, dtype=torch.float32)