# 在import部分添加median_filter from Image_Process.image_enhancement import histogram_equalization, adaptive_histogram_equalization_without_limit, unsharp_mask, laplacian_sharpen, adjust_hsv, gamma_correction, Contrast_Limited_Adaptive_Histogram_Equalization, Hight_Light, mean_filter, median_filter import datetime Image_Enhance = { "Shapen" : laplacian_sharpen, "CLAHE": histogram_equalization, "CLAHE_Adaptive" : adaptive_histogram_equalization_without_limit, "CLAHE_Adaptive_have_Limit" : Contrast_Limited_Adaptive_Histogram_Equalization, "HSV" : adjust_hsv, "gamma" : gamma_correction, "Hight_Light" : Hight_Light, "Mean" : mean_filter, "Median" : median_filter, # 添加中值濾波 "Gamma_Value" : 0.95 } Loading_Config = { "Test_Data_Root": "../Dataset/Testing", "Train_Data_Root": "../Dataset/Training", # "Annotation_Training_Root": "../Dataset/Annotation/Training", # "Annotation_Testing_Root": "../Dataset/Annotation/Testing", # "TestProcess_Image_Root" : "../TestProcess_Image", "ImageGenerator_Data_Root": "../Dataset/ImageGenerator", # "Process_Roots" : "../Dataset/test_Images", # "Image enhance processing save root": f'../Dataset/image_enhancement_Result/New_{Image_Enhance["gamma"].__name__}_and_gamma_value_is_{Image_Enhance["Gamma_Value"]}', "Image enhance processing save root": f'../Dataset/image_enhancement_Result/Resetting the training and testing dataset', "Training_Labels": ["stomach_cancer_Crop", "Normal_Crop", "Have_Question_Crop"], # "Label_Image_Labels" : ["CA", "Have_Question"], # "XML_Loading_Label" : ["stomach_cancer_Crop", "Have_Question_Crop"], # "Identification_Label_Length" : 3, } Training_Config = { "Model_Name": "Xception and GastoSegNet", "CA_Experiment_Name": f"New architecture of Xception to CA and Have Question", "Normal_Experiment_Name": f"New architecture of Xception to Normal and Others", "Mask_Experiment_Name" : "New architecture of GastoSegNet", "Three_Classes_Experiment_Name" : "Xception to Three Classes", "Epoch": 10000, "Train_Batch_Size": 64, "Image_Size": 256, "Class_Count": 904, "Get_Generator": "True", "weight_decay": 0.01, "Number_Of_Classes" : len(Loading_Config["Training_Labels"]) } Model_Config = { "Model Name": "xception", "GPA Output Nodes": 2048, "Linear Hidden Nodes": 1025, "Output Linear Nodes": 3, "Dropout Rate": 0.6 } Save_Result_File_Config = { "Identification_Plot_Image" : f"../Result/Training_Image/save_the_train_image({str(datetime.date.today())})", # 分類模型的走勢圖存檔路徑 "Segument_Plot_Image" : f"../Result/Training_Image/save_the_train_image({str(datetime.date.today())})/Segument_Plot_Image", # 分割模型的走勢圖存檔路徑 "Identification_Marix_Image" : f"../Result/Matrix_Image/model_matrix_image({str(datetime.date.today())})/Identification_Plot_Marix_Image", # 分類模型的混淆矩陣存檔路徑 "Identification_Every_Fold_Training_Result" : f'../Result/Training_Result/save_the_train_result({str(datetime.date.today())})/Identification_Every_Fold', # 分類模型每折訓練結果存檔路徑 "Identification_Average_Result" : f'../Result/Training_Average_Result/Average_Result({str(datetime.date.today())})/Identification_Average_Result', # 分類模型平均訓練結果存檔路徑 "Segument_Every_Fold_Training_Result" : f'../Result/Training_Result/save_the_train_result({str(datetime.date.today())})/Segument_Every_Fold', # 分割模型每折訓練結果存檔路徑 "Segument_Average_Result" : f'../Result/Training_Average_Result/Average_Result({str(datetime.date.today())})/Segument_Average_Result', # 分割模型平均訓練結果存檔路徑 "Segument_Bounding_Box_Image" : f'../Result/Bounding_Box_Image/save_bounding_box_image({str(datetime.date.today())})', # 分割模型邊界框圖像存檔路徑 "Segument_Test_Bounding_Box_Image" : f'../Result/Test_Bounding_Box_Image/save_bounding_box_image({str(datetime.date.today())})', # 分割模型邊界框圖像存檔路徑 "Normal_Identification_Best_Model" : '../Result/save_the_best_model/Identification_Normal', "CA_Identification_Best_Model" : "../Result/save_the_best_model/Identification_CA", "Segmentation_Best_Model" : "../Result/save_the_best_model/Segmentation", "Three_Classes_Identification_Best_Model" : "../Result/save_the_best_model/Three_Classes_Identification", "GradCAM_Validation_Image_Save_Root" : f"../Result/GradCAM_Image/Validation/GradCAM_Image({str(datetime.date.today())})", "GradCAM_Test_Image_Save_Root" : f"../Result/GradCAM_Image/Test/GradCAM_Image({str(datetime.date.today())})", "Density_Peak_Save_Root" : f"../Result/Density_Peak/Density_Peak_Result({str(datetime.date.today())})", }