from torch import nn from torch.nn import functional import torch class Entropy_Loss(nn.Module): def __init__(self): super(Entropy_Loss, self).__init__() def forward(self, outputs, labels): # 範例: 使用均方誤差作為損失計算 # outputs = torch.argmax(outputs, 1) outputs = torch.tensor(outputs, dtype=torch.float32).clone().detach() labels = torch.tensor(labels, dtype=torch.float32).clone().detach() loss = functional.cross_entropy(outputs, labels) return torch.tensor(loss, requires_grad = True).clone().detach().requires_grad_(True)