# import paramiko # from scp import SCPClient # import os # import pexpect # def createSSHClient(server, port, user, password): # client = paramiko.SSHClient() # client.load_system_host_keys() # client.set_missing_host_key_policy(paramiko.AutoAddPolicy) # client.connect(server, port, user, password) # return client # ssh = createSSHClient("10.1.29.28", 31931, "root", "whitekirin") # # os.mkdir("Original_ResNet101V2_with_NPC_Augmentation_Image") # # with open("Original_ResNet101V2_with_NPC_Augmentation_Image_train3.txt", "w") as file: # # pass # with SCPClient(ssh.get_transport()) as scp: # scp.get("/mnt/c/張晉嘉/stomach_cancer/Original_ResNet101V2_with_NPC_Augmentation_Image_train3.txt", "/raid/whitekirin/stomach_cancer/Model_result/save_the_train_result(2024-10-05)/Original_ResNet101V2_with_NPC_Augmentation_Image_train3.txt") from Training_Tools.Tools import Tool from torchvision.datasets import ImageFolder from torch.utils.data import DataLoader, Subset import torchvision.transforms as transforms import numpy as np transform = transforms.Compose([ transforms.Resize((64, 64)), transforms.ToTensor(), ]) tool = Tool() tool.Set_Labels() # 要換不同資料集就要改 tool.Set_Save_Roots() Train, Test, Validation = tool.Get_Save_Roots(1) train_dataset = ImageFolder(root=Train, transform=transform) balanced_loader = DataLoader(train_dataset, batch_size=32, shuffle=True, num_workers = 4) tests = [] for i, (test, labels) in enumerate(balanced_loader): tests.append(labels) print(tests)