import torch.nn as nn import torch.nn.functional as F import torch from utils.Stomach_Config import Model_Config class SeparableConv2d(nn.Module): def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=True): super(SeparableConv2d, self).__init__() self.depthwise = nn.Conv2d(in_channels, in_channels, kernel_size=kernel_size, stride=stride, padding=padding, groups=in_channels, bias=bias) self.pointwise = nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0, bias=bias) def forward(self, x): x = self.depthwise(x) x = self.pointwise(x) return x class EntryFlow(nn.Module): def __init__(self, in_channels=3): super(EntryFlow, self).__init__() self.conv1 = nn.Conv2d(in_channels, 32, 3, stride=2, padding=1, bias=False, dilation = 2) self.bn1 = nn.BatchNorm2d(32) self.conv2 = nn.Conv2d(32, 64, 3, padding=1, bias=False, dilation = 2) self.bn2 = nn.BatchNorm2d(64) self.conv3_residual = nn.Sequential( SeparableConv2d(64, 128, 3, padding=1), nn.BatchNorm2d(128), nn.ReLU(inplace=False), # 修改這裡 SeparableConv2d(128, 128, 3, padding=1), nn.BatchNorm2d(128), nn.MaxPool2d(3, stride=2, padding=1) ) self.conv3_shortcut = nn.Conv2d(64, 128, 1, stride=2, bias=False) self.bn3 = nn.BatchNorm2d(128) self.conv4_residual = nn.Sequential( nn.ReLU(inplace=False), # 修改這裡 SeparableConv2d(128, 256, 3, padding=1), nn.BatchNorm2d(256), nn.ReLU(inplace=False), # 修改這裡 SeparableConv2d(256, 256, 3, padding=1), nn.BatchNorm2d(256), nn.MaxPool2d(3, stride=2, padding=1) ) self.conv4_shortcut = nn.Conv2d(128, 256, 1, stride=2, bias=False) self.bn4 = nn.BatchNorm2d(256) self.conv5_residual = nn.Sequential( nn.ReLU(inplace=False), # 修改這裡 SeparableConv2d(256, 728, 3, padding=1), nn.BatchNorm2d(728), nn.ReLU(inplace=False), # 修改這裡 SeparableConv2d(728, 728, 3, padding=1), nn.BatchNorm2d(728), nn.MaxPool2d(3, stride=2, padding=1) ) self.conv5_shortcut = nn.Conv2d(256, 728, 1, stride=2, bias=False) self.bn5 = nn.BatchNorm2d(728) def forward(self, x): x = F.relu(self.bn1(self.conv1(x))) x = F.relu(self.bn2(self.conv2(x))) residual = self.conv3_residual(x) shortcut = self.conv3_shortcut(x) x = F.relu(self.bn3(residual + shortcut)) residual = self.conv4_residual(x) shortcut = self.conv4_shortcut(x) x = F.relu(self.bn4(residual + shortcut)) residual = self.conv5_residual(x) shortcut = self.conv5_shortcut(x) x = F.relu(self.bn5(residual + shortcut)) return x class MiddleFlow(nn.Module): def __init__(self): super(MiddleFlow, self).__init__() self.conv_residual = nn.Sequential( nn.ReLU(inplace=False), # 修改這裡 SeparableConv2d(728, 728, 3, padding=1), nn.BatchNorm2d(728), nn.ReLU(inplace=False), # 修改這裡 SeparableConv2d(728, 728, 3, padding=1), nn.BatchNorm2d(728), nn.ReLU(inplace=False), # 修改這裡 SeparableConv2d(728, 728, 3, padding=1), nn.BatchNorm2d(728) ) def forward(self, x): return self.conv_residual(x) + x class ExitFlow(nn.Module): def __init__(self): super(ExitFlow, self).__init__() self.conv1_residual = nn.Sequential( nn.ReLU(inplace=False), # 修改這裡 SeparableConv2d(728, 1024, 3, padding=1), nn.BatchNorm2d(1024), nn.ReLU(inplace=False), # 修改這裡 SeparableConv2d(1024, 1024, 3, padding=1), nn.BatchNorm2d(1024), nn.MaxPool2d(3, stride=2, padding=1) ) self.conv1_shortcut = nn.Conv2d(728, 1024, 1, stride=2, bias=False) self.bn1 = nn.BatchNorm2d(1024) self.conv2 = nn.Sequential( SeparableConv2d(1024, 1536, 3, padding=1), nn.BatchNorm2d(1536), nn.ReLU(inplace=False), # 修改這裡 SeparableConv2d(1536, 2048, 3, padding=1), nn.BatchNorm2d(2048), nn.ReLU(inplace=False) # 修改這裡 ) self.avgpool = nn.AdaptiveAvgPool1d(Model_Config["GPA Output Nodes"]) self.Hidden = nn.Linear(Model_Config["GPA Output Nodes"], Model_Config["Linear Hidden Nodes"]) self.fc = nn.Linear(Model_Config["Linear Hidden Nodes"], Model_Config["Output Linear Nodes"]) self.dropout = nn.Dropout(Model_Config["Dropout Rate"]) def forward(self, x): residual = self.conv1_residual(x) shortcut = self.conv1_shortcut(x) x = F.relu(self.bn1(residual + shortcut)) x = self.conv2(x) x = x.view(x.size(0), -1) x = self.avgpool(x) x = F.relu(self.Hidden(x)) x = self.dropout(x) x = self.fc(x) return x class Xception(nn.Module): def __init__(self): super(Xception, self).__init__() self.entry_flow = EntryFlow(in_channels=3) # 默认输入通道为3 self.middle_flow = nn.Sequential(*[MiddleFlow() for _ in range(8)]) self.exit_flow = ExitFlow() def forward(self, x): # 正常的前向傳播 x = self.entry_flow(x) x = self.middle_flow(x) x = self.exit_flow(x) return x