365 lines
12 KiB
Python
365 lines
12 KiB
Python
"""
|
|
Ported to pytorch thanks to [tstandley](https://github.com/tstandley/Xception-PyTorch)
|
|
|
|
@author: tstandley
|
|
Adapted by cadene
|
|
|
|
Creates an Xception Model as defined in:
|
|
|
|
Francois Chollet
|
|
Xception: Deep Learning with Depthwise Separable Convolutions
|
|
https://arxiv.org/pdf/1610.02357.pdf
|
|
|
|
This weights ported from the Keras implementation. Achieves the following performance on the validation set:
|
|
|
|
Loss:0.9173 Prec@1:78.892 Prec@5:94.292
|
|
|
|
REMEMBER to set your image size to 3x299x299 for both test and validation
|
|
|
|
normalize = transforms.Normalize(mean=[0.5, 0.5, 0.5],
|
|
std=[0.5, 0.5, 0.5])
|
|
|
|
The resize parameter of the validation transform should be 333, and make sure to center crop at 299x299
|
|
"""
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
from utils.Stomach_Config import Model_Config
|
|
|
|
from timm.layers import create_classifier
|
|
from .ViT_Model import ViTBranch # 添加或替換這個導入
|
|
|
|
|
|
class SeparableConv2d(nn.Module):
|
|
def __init__(
|
|
self,
|
|
in_channels: int,
|
|
out_channels: int,
|
|
kernel_size: int = 1,
|
|
stride: int = 1,
|
|
padding: int = 0,
|
|
dilation: int = 1,
|
|
device=None,
|
|
dtype=None,
|
|
):
|
|
dd = {'device': device, 'dtype': dtype}
|
|
super().__init__()
|
|
|
|
self.conv1 = nn.Conv2d(
|
|
in_channels,
|
|
in_channels,
|
|
kernel_size,
|
|
stride,
|
|
padding,
|
|
dilation,
|
|
groups=in_channels,
|
|
bias=False,
|
|
**dd,
|
|
)
|
|
self.pointwise = nn.Conv2d(in_channels, out_channels, 1, 1, 0, 1, 1, bias=False, **dd)
|
|
|
|
def forward(self, x):
|
|
x = self.conv1(x)
|
|
x = self.pointwise(x)
|
|
return x
|
|
|
|
|
|
class Block(nn.Module):
|
|
def __init__(
|
|
self,
|
|
in_channels: int,
|
|
out_channels: int,
|
|
reps: int,
|
|
strides: int = 1,
|
|
start_with_relu: bool = True,
|
|
grow_first: bool = True,
|
|
device=None,
|
|
dtype=None,
|
|
):
|
|
dd = {'device': device, 'dtype': dtype}
|
|
super().__init__()
|
|
|
|
if out_channels != in_channels or strides != 1:
|
|
self.skip = nn.Conv2d(in_channels, out_channels, 1, stride=strides, bias=False, **dd)
|
|
self.skipbn = nn.BatchNorm2d(out_channels, **dd)
|
|
else:
|
|
self.skip = None
|
|
|
|
rep = []
|
|
for i in range(reps):
|
|
if grow_first:
|
|
inc = in_channels if i == 0 else out_channels
|
|
outc = out_channels
|
|
else:
|
|
inc = in_channels
|
|
outc = in_channels if i < (reps - 1) else out_channels
|
|
rep.append(nn.ReLU(inplace=True))
|
|
rep.append(SeparableConv2d(inc, outc, 3, stride=1, padding=1, **dd))
|
|
rep.append(nn.BatchNorm2d(outc, **dd))
|
|
|
|
if not start_with_relu:
|
|
rep = rep[1:]
|
|
else:
|
|
rep[0] = nn.ReLU(inplace=False)
|
|
|
|
if strides != 1:
|
|
rep.append(nn.MaxPool2d(3, strides, 1))
|
|
self.rep = nn.Sequential(*rep)
|
|
|
|
def forward(self, inp):
|
|
x = self.rep(inp)
|
|
|
|
if self.skip is not None:
|
|
skip = self.skip(inp)
|
|
skip = self.skipbn(skip)
|
|
else:
|
|
skip = inp
|
|
|
|
x += skip
|
|
return x
|
|
|
|
|
|
class Xception(nn.Module):
|
|
"""
|
|
Xception optimized for the ImageNet dataset, as specified in
|
|
https://arxiv.org/pdf/1610.02357.pdf
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
num_classes: int = 1000,
|
|
in_chans: int = 3,
|
|
drop_rate: float = 0.,
|
|
global_pool: str = 'avg',
|
|
device=None,
|
|
dtype=None,
|
|
):
|
|
""" Constructor
|
|
Args:
|
|
num_classes: number of classes
|
|
"""
|
|
super().__init__()
|
|
dd = {'device': device, 'dtype': dtype}
|
|
self.drop_rate = drop_rate
|
|
self.global_pool = global_pool
|
|
self.num_classes = num_classes
|
|
self.num_features = self.head_hidden_size = 2048
|
|
|
|
self.conv1 = nn.Conv2d(in_chans, 32, 3, 2, 0, bias=False, **dd)
|
|
self.bn1 = nn.BatchNorm2d(32, **dd)
|
|
self.act1 = nn.ReLU(inplace=True)
|
|
|
|
self.conv2 = nn.Conv2d(32, 64, 3, bias=False, **dd)
|
|
self.bn2 = nn.BatchNorm2d(64, **dd)
|
|
self.act2 = nn.ReLU(inplace=True)
|
|
|
|
self.block1 = Block(64, 128, 2, 2, start_with_relu=False, **dd)
|
|
self.block2 = Block(128, 256, 2, 2, **dd)
|
|
self.block3 = Block(256, 728, 2, 2, **dd)
|
|
|
|
self.block4 = Block(728, 728, 3, 1, **dd)
|
|
self.block5 = Block(728, 728, 3, 1, **dd)
|
|
self.block6 = Block(728, 728, 3, 1, **dd)
|
|
self.block7 = Block(728, 728, 3, 1, **dd)
|
|
|
|
self.block8 = Block(728, 728, 3, 1, **dd)
|
|
self.block9 = Block(728, 728, 3, 1, **dd)
|
|
self.block10 = Block(728, 728, 3, 1, **dd)
|
|
self.block11 = Block(728, 728, 3, 1, **dd)
|
|
|
|
self.block12 = Block(728, 1024, 2, 2, grow_first=False, **dd)
|
|
|
|
self.conv3 = SeparableConv2d(1024, 1536, 3, 1, 1, **dd)
|
|
self.bn3 = nn.BatchNorm2d(1536, **dd)
|
|
self.act3 = nn.ReLU(inplace=True)
|
|
|
|
self.conv4 = SeparableConv2d(1536, self.num_features, 3, 1, 1, **dd)
|
|
self.bn4 = nn.BatchNorm2d(self.num_features, **dd)
|
|
self.act4 = nn.ReLU(inplace=True)
|
|
self.feature_info = [
|
|
dict(num_chs=64, reduction=2, module='act2'),
|
|
dict(num_chs=128, reduction=4, module='block2.rep.0'),
|
|
dict(num_chs=256, reduction=8, module='block3.rep.0'),
|
|
dict(num_chs=728, reduction=16, module='block12.rep.0'),
|
|
dict(num_chs=2048, reduction=32, module='act4'),
|
|
]
|
|
|
|
self.global_pool, self.fc = create_classifier(self.num_features, self.num_classes, pool_type=global_pool, **dd)
|
|
self.hidden_layer = nn.Linear(2048, Model_Config["Linear Hidden Nodes"]) # 隱藏層,輸入大小取決於 Xception 的輸出大小
|
|
self.output_layer = nn.Linear(Model_Config["Linear Hidden Nodes"], Model_Config["Output Linear Nodes"]) # 輸出層,依據分類數目設定
|
|
|
|
# 激活函數與 dropout
|
|
self.relu = nn.ReLU()
|
|
self.dropout = nn.Dropout(Model_Config["Dropout Rate"])
|
|
|
|
# #------- init weights --------
|
|
for m in self.modules():
|
|
if isinstance(m, nn.Conv2d):
|
|
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
|
|
elif isinstance(m, nn.BatchNorm2d):
|
|
m.weight.data.fill_(1)
|
|
m.bias.data.zero_()
|
|
|
|
def reset_classifier(self, num_classes: int, global_pool: str = 'avg'):
|
|
self.num_classes = num_classes
|
|
self.global_pool, self.fc = create_classifier(self.num_features, self.num_classes, pool_type=global_pool)
|
|
|
|
def forward_features(self, x):
|
|
x = self.conv1(x)
|
|
x = self.bn1(x)
|
|
x = self.act1(x)
|
|
|
|
x = self.conv2(x)
|
|
x = self.bn2(x)
|
|
x = self.act2(x)
|
|
|
|
x = self.block1(x)
|
|
x = self.block2(x)
|
|
x = self.block3(x)
|
|
x = self.block4(x)
|
|
x = self.block5(x)
|
|
x = self.block6(x)
|
|
x = self.block7(x)
|
|
x = self.block8(x)
|
|
x = self.block9(x)
|
|
x = self.block10(x)
|
|
x = self.block11(x)
|
|
x = self.block12(x)
|
|
|
|
x = self.conv3(x)
|
|
x = self.bn3(x)
|
|
x = self.act3(x)
|
|
|
|
x = self.conv4(x)
|
|
x = self.bn4(x)
|
|
x = self.act4(x)
|
|
return x
|
|
|
|
def forward_head(self, x):
|
|
x = self.global_pool(x)
|
|
return x
|
|
|
|
def forward(self, x):
|
|
x = self.forward_features(x)
|
|
x = self.forward_head(x)
|
|
|
|
x = self.dropout(x) # Dropout
|
|
x = self.hidden_layer(x)
|
|
x = self.relu(x) # 隱藏層 + ReLU
|
|
x = self.output_layer(x) # 輸出層
|
|
return x
|
|
|
|
|
|
# xception_vit.py
|
|
class XceptionWithViT(nn.Module):
|
|
"""
|
|
Xception + ViT Branch (Middle Flow 後融合)
|
|
"""
|
|
def __init__(
|
|
self,
|
|
num_classes: int = 1000,
|
|
in_chans: int = 3,
|
|
drop_rate: float = 0.0,
|
|
global_pool: str = 'avg',
|
|
vit_patch_size: int = 4,
|
|
vit_depth: int = 3,
|
|
vit_heads: int = 8,
|
|
device=None,
|
|
dtype=None,
|
|
):
|
|
super().__init__()
|
|
dd = {'device': device, 'dtype': dtype}
|
|
self.drop_rate = drop_rate
|
|
self.global_pool = global_pool
|
|
self.num_features = 2048
|
|
|
|
# === Entry Flow ===
|
|
self.conv1 = nn.Conv2d(in_chans, 32, 3, 2, 0, bias=False, **dd)
|
|
self.bn1 = nn.BatchNorm2d(32, **dd)
|
|
self.act1 = nn.ReLU(inplace=True)
|
|
|
|
self.conv2 = nn.Conv2d(32, 64, 3, bias=False, **dd)
|
|
self.bn2 = nn.BatchNorm2d(64, **dd)
|
|
self.act2 = nn.ReLU(inplace=True)
|
|
|
|
self.block1 = Block(64, 128, 2, 2, start_with_relu=False, **dd)
|
|
self.block2 = Block(128, 256, 2, 2, **dd)
|
|
self.block3 = Block(256, 728, 2, 2, **dd)
|
|
|
|
# === Middle Flow ===
|
|
for i in range(4, 12):
|
|
setattr(self, f'block{i}', Block(728, 728, 3, 1, **dd))
|
|
|
|
# === ViT Branch ===
|
|
self.vit_branch = ViTBranch(
|
|
in_chs=728,
|
|
embed_dim=728,
|
|
patch_size=4,
|
|
depth=3,
|
|
num_heads=8,
|
|
mlp_ratio=4.0,
|
|
drop_rate=0.0,
|
|
attn_drop_rate=0.0,
|
|
device=device,
|
|
dtype=dtype
|
|
)
|
|
|
|
# === Exit Flow ===
|
|
self.block12 = Block(728, 1024, 2, 2, grow_first=False, **dd)
|
|
self.conv3 = SeparableConv2d(1024, 1536, 3, 1, 1, **dd)
|
|
self.bn3 = nn.BatchNorm2d(1536, **dd)
|
|
self.act3 = nn.ReLU(inplace=True)
|
|
self.conv4 = SeparableConv2d(1536, self.num_features, 3, 1, 1, **dd)
|
|
self.bn4 = nn.BatchNorm2d(self.num_features, **dd)
|
|
self.act4 = nn.ReLU(inplace=True)
|
|
|
|
# === Classifier ===
|
|
self.global_pool, _ = create_classifier(self.num_features, num_classes, pool_type=global_pool, **dd)
|
|
self.hidden_layer = nn.Linear(2048, Model_Config["Linear Hidden Nodes"])
|
|
self.output_layer = nn.Linear(Model_Config["Linear Hidden Nodes"], Model_Config["Output Linear Nodes"])
|
|
self.relu = nn.ReLU()
|
|
self.dropout = nn.Dropout(Model_Config["Dropout Rate"])
|
|
|
|
# === Weight Init ===
|
|
self._init_weights()
|
|
|
|
def _init_weights(self):
|
|
for m in self.modules():
|
|
if isinstance(m, nn.Conv2d):
|
|
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
|
|
elif isinstance(m, (nn.BatchNorm2d, nn.LayerNorm)):
|
|
nn.init.constant_(m.weight, 1)
|
|
nn.init.constant_(m.bias, 0)
|
|
elif isinstance(m, nn.Linear):
|
|
nn.init.normal_(m.weight, 0, 0.01)
|
|
if m.bias is not None:
|
|
nn.init.constant_(m.bias, 0)
|
|
|
|
def forward_features(self, x):
|
|
# Entry
|
|
x = self.act1(self.bn1(self.conv1(x)))
|
|
x = self.act2(self.bn2(self.conv2(x)))
|
|
x = self.block1(x)
|
|
x = self.block2(x)
|
|
x = self.block3(x)
|
|
|
|
# Middle Flow
|
|
for i in range(4, 12):
|
|
x = getattr(self, f'block{i}')(x)
|
|
|
|
# === ViT Fusion ===
|
|
vit_out = self.vit_branch(x)
|
|
x = x + vit_out # element-wise add
|
|
|
|
# Exit Flow
|
|
x = self.block12(x)
|
|
x = self.act3(self.bn3(self.conv3(x)))
|
|
x = self.act4(self.bn4(self.conv4(x)))
|
|
return x
|
|
|
|
def forward(self, x):
|
|
x = self.forward_features(x)
|
|
x = self.global_pool(x)
|
|
x = self.dropout(x)
|
|
x = self.relu(self.hidden_layer(x))
|
|
x = self.output_layer(x)
|
|
return x |