Files
Stomach_Cancer_Pytorch/all_models_tools/all_model_tools.py

53 lines
2.1 KiB
Python

from Load_process.file_processing import Process_File
import datetime
import torch
class EarlyStopping:
def __init__(self, patience=74, verbose=False, delta=0):
self.patience = patience
self.verbose = verbose
self.delta = delta
self.counter = 0
self.best_loss = None
self.early_stop = False
def __call__(self, val_loss, model, save_path):
if self.best_loss is None:
self.best_loss = val_loss
self.save_checkpoint(val_loss, model, save_path)
elif val_loss > self.best_loss + self.delta:
self.counter += 1
if self.verbose:
print(f"EarlyStopping counter: {self.counter} out of {self.patience}")
if self.counter >= self.patience:
self.early_stop = True
else:
self.best_loss = val_loss
self.save_checkpoint(val_loss, model, save_path)
self.counter = 0
def save_checkpoint(self, val_loss, model, save_path):
torch.save(model.state_dict(), save_path)
if self.verbose:
print(f"Validation loss decreased ({self.best_loss:.6f} --> {val_loss:.6f}). Saving model to {save_path}")
def call_back(Save_Root, index, optimizer):
File = Process_File()
File.JudgeRoot_MakeDir(Save_Root)
modelfiles = File.Make_Save_Root('best_model( ' + str(datetime.date.today()) + " )-" + index + ".pt", Save_Root)
# model_mckp = ModelCheckpoint(modelfiles, monitor='val_loss', save_best_only=True, save_weights_only = True, mode='auto')
earlystop = EarlyStopping(patience=74, verbose=True) # 提早停止
reduce_lr = torch.optim.lr_scheduler.ReduceLROnPlateau(
optimizer,
factor = 0.94, # 學習率降低的量。 new_lr = lr * factor
patience = 2, # 沒有改進的時期數,之後學習率將降低
mode = 'min',
min_lr = 0 # 學習率下限
)
return modelfiles, earlystop, reduce_lr