Stomach_Cancer_Pytorch/experiments/Models/Xception_Model_Modification.py

148 lines
5.6 KiB
Python

import torch.nn as nn
import torch.nn.functional as F
import torch
class SeparableConv2d(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=True):
super(SeparableConv2d, self).__init__()
self.depthwise = nn.Conv2d(in_channels, in_channels, kernel_size=kernel_size, stride=stride,
padding=padding, groups=in_channels, bias=bias)
self.pointwise = nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1,
padding=0, bias=bias)
def forward(self, x):
x = self.depthwise(x)
x = self.pointwise(x)
return x
class EntryFlow(nn.Module):
def __init__(self, in_channels=3):
super(EntryFlow, self).__init__()
self.conv1 = nn.Conv2d(in_channels, 32, 3, stride=2, padding=1, bias=False, dilation = 2)
self.bn1 = nn.BatchNorm2d(32)
self.conv2 = nn.Conv2d(32, 64, 3, padding=1, bias=False, dilation = 2)
self.bn2 = nn.BatchNorm2d(64)
self.conv3_residual = nn.Sequential(
SeparableConv2d(64, 128, 3, padding=1),
nn.BatchNorm2d(128),
nn.ReLU(inplace=False), # 修改這裡
SeparableConv2d(128, 128, 3, padding=1),
nn.BatchNorm2d(128),
nn.MaxPool2d(3, stride=2, padding=1)
)
self.conv3_shortcut = nn.Conv2d(64, 128, 1, stride=2, bias=False)
self.bn3 = nn.BatchNorm2d(128)
self.conv4_residual = nn.Sequential(
nn.ReLU(inplace=False), # 修改這裡
SeparableConv2d(128, 256, 3, padding=1),
nn.BatchNorm2d(256),
nn.ReLU(inplace=False), # 修改這裡
SeparableConv2d(256, 256, 3, padding=1),
nn.BatchNorm2d(256),
nn.MaxPool2d(3, stride=2, padding=1)
)
self.conv4_shortcut = nn.Conv2d(128, 256, 1, stride=2, bias=False)
self.bn4 = nn.BatchNorm2d(256)
self.conv5_residual = nn.Sequential(
nn.ReLU(inplace=False), # 修改這裡
SeparableConv2d(256, 728, 3, padding=1),
nn.BatchNorm2d(728),
nn.ReLU(inplace=False), # 修改這裡
SeparableConv2d(728, 728, 3, padding=1),
nn.BatchNorm2d(728),
nn.MaxPool2d(3, stride=2, padding=1)
)
self.conv5_shortcut = nn.Conv2d(256, 728, 1, stride=2, bias=False)
self.bn5 = nn.BatchNorm2d(728)
def forward(self, x):
x = F.relu(self.bn1(self.conv1(x)))
x = F.relu(self.bn2(self.conv2(x)))
residual = self.conv3_residual(x)
shortcut = self.conv3_shortcut(x)
x = F.relu(self.bn3(residual + shortcut))
residual = self.conv4_residual(x)
shortcut = self.conv4_shortcut(x)
x = F.relu(self.bn4(residual + shortcut))
residual = self.conv5_residual(x)
shortcut = self.conv5_shortcut(x)
x = F.relu(self.bn5(residual + shortcut))
return x
class MiddleFlow(nn.Module):
def __init__(self):
super(MiddleFlow, self).__init__()
self.conv_residual = nn.Sequential(
nn.ReLU(inplace=False), # 修改這裡
SeparableConv2d(728, 728, 3, padding=1),
nn.BatchNorm2d(728),
nn.ReLU(inplace=False), # 修改這裡
SeparableConv2d(728, 728, 3, padding=1),
nn.BatchNorm2d(728),
nn.ReLU(inplace=False), # 修改這裡
SeparableConv2d(728, 728, 3, padding=1),
nn.BatchNorm2d(728)
)
def forward(self, x):
return self.conv_residual(x) + x
class ExitFlow(nn.Module):
def __init__(self, num_classes=2):
super(ExitFlow, self).__init__()
self.conv1_residual = nn.Sequential(
nn.ReLU(inplace=False), # 修改這裡
SeparableConv2d(728, 1024, 3, padding=1),
nn.BatchNorm2d(1024),
nn.ReLU(inplace=False), # 修改這裡
SeparableConv2d(1024, 1024, 3, padding=1),
nn.BatchNorm2d(1024),
nn.MaxPool2d(3, stride=2, padding=1)
)
self.conv1_shortcut = nn.Conv2d(728, 1024, 1, stride=2, bias=False)
self.bn1 = nn.BatchNorm2d(1024)
self.conv2 = nn.Sequential(
SeparableConv2d(1024, 1536, 3, padding=1),
nn.BatchNorm2d(1536),
nn.ReLU(inplace=False), # 修改這裡
SeparableConv2d(1536, 2048, 3, padding=1),
nn.BatchNorm2d(2048),
nn.ReLU(inplace=False) # 修改這裡
)
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
self.Hidden = nn.Linear(2048, 1025)
self.fc = nn.Linear(1025, num_classes)
def forward(self, x):
residual = self.conv1_residual(x)
shortcut = self.conv1_shortcut(x)
x = F.relu(self.bn1(residual + shortcut))
x = self.conv2(x)
x = self.avgpool(x)
x = x.view(x.size(0), -1)
x = self.Hidden(x)
x = self.fc(x)
return x
class Xception(nn.Module):
def __init__(self, num_classes=2):
super(Xception, self).__init__()
self.entry_flow = EntryFlow(in_channels=3) # 默认输入通道为3
self.middle_flow = nn.Sequential(*[MiddleFlow() for _ in range(8)])
self.exit_flow = ExitFlow(num_classes)
def forward(self, x):
# 正常的前向傳播
x = self.entry_flow(x)
x = self.middle_flow(x)
x = self.exit_flow(x)
return x