Stomach_Cancer_Pytorch/utils/Stomach_Config.py

73 lines
4.3 KiB
Python

# 在import部分添加median_filter
from Image_Process.image_enhancement import histogram_equalization, adaptive_histogram_equalization_without_limit, unsharp_mask, laplacian_sharpen, adjust_hsv, gamma_correction, Contrast_Limited_Adaptive_Histogram_Equalization, Hight_Light, mean_filter, median_filter
import datetime
Image_Enhance = {
"Shapen" : laplacian_sharpen,
"CLAHE": histogram_equalization,
"CLAHE_Adaptive" : adaptive_histogram_equalization_without_limit,
"CLAHE_Adaptive_have_Limit" : Contrast_Limited_Adaptive_Histogram_Equalization,
"HSV" : adjust_hsv,
"gamma" : gamma_correction,
"Hight_Light" : Hight_Light,
"Mean" : mean_filter,
"Median" : median_filter, # 添加中值濾波
"Gamma_Value" : 1.0
}
Loading_Config = {
"Test_Data_Root": "../Dataset/Testing",
"Train_Data_Root": "../Dataset/Training",
"Annotation_Training_Root": "../Dataset/Annotation/Training",
"Annotation_Testing_Root": "../Dataset/Annotation/Testing",
"TestProcess_Image_Root" : "../TestProcess_Image",
"ImageGenerator_Data_Root": "../Dataset/ImageGenerator",
"Process_Roots" : "../Dataset/test_Images",
# "Image enhance processing save root": f'../Dataset/image_enhancement_Result/New_{Image_Enhance["gamma"].__name__}_and_gamma_value_is_{Image_Enhance["Gamma_Value"]}',
"Image enhance processing save root": f'../Dataset/image_enhancement_Result/Resetting the training and testing dataset',
"Training_Labels": ["stomach_cancer_Crop", "Normal_Crop", "Have_Question_Crop"],
"Label_Image_Labels" : ["CA", "Have_Question"],
"XML_Loading_Label" : ["stomach_cancer_Crop", "Have_Question_Crop"],
"Identification_Label_Length" : 2,
}
Training_Config = {
"Model_Name": "Xception and GastoSegNet",
"CA_Experiment_Name": f"New architecture of Xception to CA and Have Question",
"Normal_Experiment_Name": f"New architecture of Xception to Normal and Others",
"Mask_Experiment_Name" : "New architecture of GastoSegNet",
"Epoch": 10000,
"Train_Batch_Size": 64,
"Image_Size": 256,
"Class_Count": 904,
"Get_Generator": "True",
"weight_decay": 0.01,
"Number_Of_Classes" : len(Loading_Config["Training_Labels"])
}
Model_Config = {
"Model Name": "xception",
"GPA Output Nodes": 2048,
"Linear Hidden Nodes": 1025,
"Output Linear Nodes": 2,
"Dropout Rate": 0.6
}
Save_Result_File_Config = {
"Identification_Plot_Image" : f"../Result/Training_Image/save_the_train_image({str(datetime.date.today())})", # 分類模型的走勢圖存檔路徑
"Segument_Plot_Image" : f"../Result/Training_Image/save_the_train_image({str(datetime.date.today())})/Segument_Plot_Image", # 分割模型的走勢圖存檔路徑
"Identification_Marix_Image" : f"../Result/Matrix_Image/model_matrix_image({str(datetime.date.today())})/Identification_Plot_Marix_Image", # 分類模型的混淆矩陣存檔路徑
"Identification_Every_Fold_Training_Result" : f'../Result/Training_Result/save_the_train_result({str(datetime.date.today())})/Identification_Every_Fold', # 分類模型每折訓練結果存檔路徑
"Identification_Average_Result" : f'../Result/Training_Average_Result/Average_Result({str(datetime.date.today())})/Identification_Average_Result', # 分類模型平均訓練結果存檔路徑
"Segument_Every_Fold_Training_Result" : f'../Result/Training_Result/save_the_train_result({str(datetime.date.today())})/Segument_Every_Fold', # 分割模型每折訓練結果存檔路徑
"Segument_Average_Result" : f'../Result/Training_Average_Result/Average_Result({str(datetime.date.today())})/Segument_Average_Result', # 分割模型平均訓練結果存檔路徑
"Segument_Bounding_Box_Image" : f'../Result/Bounding_Box_Image/save_bounding_box_image({str(datetime.date.today())})', # 分割模型邊界框圖像存檔路徑
"Segument_Test_Bounding_Box_Image" : f'../Result/Test_Bounding_Box_Image/save_bounding_box_image({str(datetime.date.today())})', # 分割模型邊界框圖像存檔路徑
"Normal_Identification_Best_Model" : '../Result/save_the_best_model/Identification_Normal',
"CA_Identification_Best_Model" : "../Result/save_the_best_model/Identification_CA",
"Segmentation_Best_Model" : "../Result/save_the_best_model/Segmentation",
}