74 lines
3.6 KiB
Python
74 lines
3.6 KiB
Python
from merge_class.merge import merge
|
||
from Load_process.LoadData import Load_Data_Prepare, Load_Data_Tools
|
||
from model_data_processing.processing import make_label_list
|
||
from utils.Stomach_Config import Loading_Config
|
||
|
||
class Load_Indepentend_Data():
|
||
def __init__(self, OneHot_Encording):
|
||
'''
|
||
影像切割物件
|
||
label有2類,會將其轉成one-hot-encoding的形式
|
||
[0, 1] = NPC_negative
|
||
[1, 0] = NPC_positive
|
||
'''
|
||
self.merge = merge()
|
||
self.OneHot_Encording = OneHot_Encording
|
||
pass
|
||
|
||
def process_main(self, Test_data_root, Test_mask_root):
|
||
self.test, self.test_label, self.test_mask = self.get_Independent_image(Test_data_root, Test_mask_root)
|
||
print("\ntest_labels有" + str(len(self.test_label)) + "筆資料\n")
|
||
|
||
def get_Independent_image(self, independent_DataRoot, independent_MaskRoot):
|
||
Total_Size_List = []
|
||
Total_Dict_Data_Root = self.Get_Independent_data_Root(independent_DataRoot, Loading_Config["Training_Labels"], len(Loading_Config["Training_Labels"])) # 讀取測試資料集的資料
|
||
Total_Dict_Mask_Root = self.Get_Independent_data_Root(independent_MaskRoot, Loading_Config["XML_Loading_Label"], len(Loading_Config["XML_Loading_Label"])) # 讀取測試資料集的mask資料
|
||
|
||
# 將測試資料字典轉成列表,並且將其排序
|
||
Total_List_Data_Root = []
|
||
for Label in Loading_Config["Training_Labels"]:
|
||
Total_List_Data_Root.append(Total_Dict_Data_Root[Label])
|
||
|
||
# 將測試資料字典轉成列表,並且將其排序
|
||
Total_List_Mask_Data_Root = []
|
||
for Label in Loading_Config["XML_Loading_Label"]:
|
||
Total_List_Mask_Data_Root.append(Total_Dict_Mask_Root[Label])
|
||
|
||
classify_image, Classify_Label = [], []
|
||
i = 0 # 計算classify_image的counter,且計算總共有幾筆資料
|
||
for test_title in Total_List_Data_Root: # 藉由讀取所有路徑來進行讀檔
|
||
test_label = make_label_list(len(test_title), self.OneHot_Encording[i]) # 製作對應圖片數量的label出來+
|
||
print(Loading_Config["Training_Labels"][i] + " 有 " + str(len(test_label)) + " 筆資料 ")
|
||
|
||
Total_Size_List.append(len(test_label))
|
||
|
||
classify_image.append(test_title)
|
||
Classify_Label.append(test_label)
|
||
i += 1
|
||
|
||
classify_Mask_image = []
|
||
i = 0 # 計算classify_image的counter,且計算總共有幾筆資料
|
||
for test_title in Total_List_Mask_Data_Root: # 藉由讀取所有路徑來進行讀檔
|
||
print(Loading_Config["XML_Loading_Label"][i] + " 有 " + str(len(test_title)) + " 筆資料 ")
|
||
|
||
classify_Mask_image.append(test_title)
|
||
i += 1
|
||
|
||
test = self.merge.merge_data_main(classify_image, 0, len(Loading_Config["Training_Labels"]))
|
||
test_label = self.merge.merge_data_main(Classify_Label, 0, len(Loading_Config["Training_Labels"]))
|
||
test_Mask = self.merge.merge_data_main(classify_Mask_image, 0, len(Loading_Config["XML_Loading_Label"]))
|
||
|
||
return test, test_label, test_Mask
|
||
|
||
|
||
def Get_Independent_data_Root(self, load_data_root, Dictory_Keys, Length):
|
||
Prepare = Load_Data_Prepare()
|
||
Load_Tool = Load_Data_Tools()
|
||
|
||
Prepare.Set_Data_Content([], Length)
|
||
Prepare.Set_Data_Dictionary(Dictory_Keys, Prepare.Get_Data_Content(), Length)
|
||
Get_Data_Dict_Content = Prepare.Get_Data_Dict()
|
||
Total_Data_Roots = Load_Tool.get_data_root(load_data_root, Get_Data_Dict_Content, Dictory_Keys)
|
||
|
||
return Total_Data_Roots
|