Stomach_Cancer_Pytorch/draw_tools/Grad_cam.py

149 lines
6.7 KiB
Python

import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import cv2
from PIL import Image
import matplotlib.pyplot as plt
import datetime
from Load_process.file_processing import Process_File
class GradCAM:
def __init__(self, model, target_layer):
self.model = model
self.target_layer = target_layer
self.activations = None
self.gradients = None
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
self.model.to(self.device) # Ensure model is on the correct device
# Register hooks
self.target_layer.register_forward_hook(self.save_activations)
# Use full backward hook if available to avoid deprecation issues
if hasattr(self.target_layer, "register_full_backward_hook"):
self.target_layer.register_full_backward_hook(self.save_gradients)
else:
self.target_layer.register_backward_hook(self.save_gradients)
def Processing_Main(self, Test_Dataloader, File_Path):
File = Process_File()
for batch_idx, (images, labels, File_Name, File_Classes) in enumerate(Test_Dataloader):
# Move data to device
images = images.to(self.device, dtype=torch.float32) # [64, C, H, W]
labels = labels.to(self.device, dtype=torch.float32) # [64, num_classes]
# Get ground-truth class indices
label_classes = torch.argmax(labels, dim=1).cpu().numpy() # [64]
# Generate Grad-CAM heatmaps for the entire batch
heatmaps = self.generate(images, label_classes)
# Process each image in the batch
for i in range(images.size(0)): # Loop over batch size (64)
heatmap = heatmaps[i] # Extract heatmap for this image
overlaid_image = self.overlay_heatmap(heatmap, images[i], alpha=0.5)
# Create file path based on class
path = f"{File_Path}/{File_Classes[i]}"
File.JudgeRoot_MakeDir(path)
# Save overlaid image
File.Save_CV2_File(f"batch_{batch_idx}_{File_Name[i]}", path, overlaid_image)
# # Save raw heatmap separately
# heatmap_resized = cv2.resize(heatmap, (images[i].shape[2], images[i].shape[1]), interpolation=cv2.INTER_CUBIC)
# heatmap_colored = (plt.cm.viridis(heatmap_resized)[:, :, :3] * 255).astype(np.uint8)
# File.Save_CV2_File(f"batch_{batch_idx}_img_{i}_heatmap.png", path, heatmap_colored)
def save_activations(self, module, input, output):
self.activations = output.detach() # [64, C, H', W']
def save_gradients(self, module, grad_input, grad_output):
self.gradients = grad_output[0].detach() # [64, C, H', W']
def generate(self, input_images, class_indices=None):
self.model.eval()
input_images.requires_grad = True # [B, C, H, W]
outputs = self.model(input_images) # [B, num_classes]
if class_indices is None:
class_indices = torch.argmax(outputs, dim=1).cpu().numpy()
self.model.zero_grad()
heatmaps = []
for i in range(input_images.size(0)):
self.model.zero_grad()
# Backward for the specific image and class
outputs[i, class_indices[i]].backward(retain_graph=True)
# Compute heatmap for sample i
heatmap = self._compute_heatmap(sample_index=i)
heatmaps.append(heatmap)
return np.stack(heatmaps) # [B, H', W']
def _compute_heatmap(self, sample_index):
# Get gradients and activations for the specific sample
gradients = self.gradients[sample_index] # [C, H', W']
activations = self.activations[sample_index] # [C, H', W']
# Compute weights (global average pooling of gradients)
weights = torch.mean(gradients, dim=(1, 2), keepdim=True) # [C, 1, 1]
# Grad-CAM: weighted sum of activations
grad_cam = torch.sum(weights * activations, dim=0) # [H', W']
grad_cam = F.relu(grad_cam)
grad_cam = grad_cam / (grad_cam.max() + 1e-8)
# Apply Gaussian smoothing to reduce artifacts
grad_cam_np = grad_cam.detach().cpu().numpy()
grad_cam_np = cv2.GaussianBlur(grad_cam_np, (5, 5), 0)
grad_cam_np = grad_cam_np / (grad_cam_np.max() + 1e-8)
return grad_cam_np
def overlay_heatmap(self, heatmap, image, alpha=0.5):
# Resize heatmap to match input image spatial dimensions using INTER_CUBIC for smoother results
heatmap = np.uint8(255 * heatmap) # Scale to [0, 255]
heatmap = cv2.resize(heatmap, (image.shape[2], image.shape[1]), interpolation=cv2.INTER_CUBIC)
# Use viridis colormap for better interpretability
heatmap = plt.cm.viridis(heatmap)[:, :, :3] # Apply viridis colormap
# Convert image tensor to numpy and denormalize (assuming ImageNet stats)
image_np = image.detach().cpu().permute(1, 2, 0).numpy() # [H, W, C]
# Ensure image is in [0, 1] range (if not already)
if image_np.max() > 1.0:
image_np = (image_np - image_np.min()) / (image_np.max() - image_np.min())
# Overlay heatmap on the image
overlay = alpha * heatmap + (1 - alpha) * image_np
overlay = np.clip(overlay, 0, 1) * 255
return overlay.astype(np.uint8) # Return uint8 for cv2
def find_last_conv_layer(model):
# Traverse modules in reverse order to find the last Conv2d
last_conv = None
for m in model.modules():
if isinstance(m, nn.Conv2d):
last_conv = m
if last_conv is None:
raise RuntimeError("No nn.Conv2d layer found in the model for Grad-CAM.")
return last_conv
def run_grad_cam(model, dataloader, output_root):
# Convenience wrapper to run Grad-CAM end-to-end with your loaders
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model.to(device)
target_layer = find_last_conv_layer(model)
grad = GradCAM(model, target_layer)
file = Process_File()
for batch_idx, (images, labels, file_names, file_classes) in enumerate(dataloader):
images = images.to(device, dtype=torch.float32)
labels = labels.to(device, dtype=torch.float32)
label_classes = torch.argmax(labels, dim=1).cpu().numpy()
heatmaps = grad.generate(images, label_classes)
for i in range(images.size(0)):
overlaid = grad.overlay_heatmap(heatmaps[i], images[i], alpha=0.5)
out_dir = f"{output_root}/{file_classes[i]}"
file.JudgeRoot_MakeDir(out_dir)
file.Save_CV2_File(f"batch_{batch_idx}_{file_names[i]}", out_dir, overlaid)