Files
Stomach_Cancer_Pytorch/all_models_tools/all_model_tools.py

68 lines
2.6 KiB
Python

from Load_process.file_processing import Process_File
import datetime
import torch
# def attention_block(input):
# channel = input.shape[-1]
# GAP = GlobalAveragePooling2D()(input)
# block = Dense(units = channel // 16, activation = "relu")(GAP)
# block = Dense(units = channel, activation = "sigmoid")(block)
# block = Reshape((1, 1, channel))(block)
# block = Multiply()([input, block])
# return block
class EarlyStopping:
def __init__(self, patience=74, verbose=False, delta=0):
self.patience = patience
self.verbose = verbose
self.delta = delta
self.counter = 0
self.best_loss = None
self.early_stop = False
def __call__(self, val_loss, model, save_path):
if self.best_loss is None:
self.best_loss = val_loss
self.save_checkpoint(val_loss, model, save_path)
elif val_loss > self.best_loss + self.delta:
self.counter += 1
if self.verbose:
print(f"EarlyStopping counter: {self.counter} out of {self.patience}")
if self.counter >= self.patience:
self.early_stop = True
else:
self.best_loss = val_loss
self.save_checkpoint(val_loss, model, save_path)
self.counter = 0
def save_checkpoint(self, val_loss, model, save_path):
torch.save(model.state_dict(), save_path)
if self.verbose:
print(f"Validation loss decreased ({self.best_loss:.6f} --> {val_loss:.6f}). Saving model to {save_path}")
def call_back(model_name, index, optimizer):
File = Process_File()
model_dir = '../Result/save_the_best_model/' + model_name
File.JudgeRoot_MakeDir(model_dir)
modelfiles = File.Make_Save_Root('best_model( ' + str(datetime.date.today()) + " )-" + index + ".pt", model_dir)
# model_mckp = ModelCheckpoint(modelfiles, monitor='val_loss', save_best_only=True, save_weights_only = True, mode='auto')
earlystop = EarlyStopping(patience=74, verbose=True) # 提早停止
reduce_lr = torch.optim.lr_scheduler.ReduceLROnPlateau(
optimizer,
factor = 0.94, # 學習率降低的量。 new_lr = lr * factor
patience = 2, # 沒有改進的時期數,之後學習率將降低
verbose = 0,
mode = 'min',
min_lr = 0 # 學習率下限
)
return modelfiles, earlystop, reduce_lr