83 lines
3.3 KiB
Python
83 lines
3.3 KiB
Python
import pandas as pd
|
|
from sklearn.preprocessing import OneHotEncoder
|
|
|
|
class Tool:
|
|
def __init__(self) -> None:
|
|
self.__ICG_Training_Root = ""
|
|
self.__Normal_Training_Root = ""
|
|
self.__Comprehensive_Training_Root = ""
|
|
|
|
self.__ICG_Test_Data_Root = ""
|
|
self.__Normal_Test_Data_Root = ""
|
|
self.__Comprehensive_Testing_Root = ""
|
|
|
|
self.__ICG_Validation_Data_Root = ""
|
|
self.__Normal_Validation_Data_Root = ""
|
|
self.__Comprehensive_Validation_Root = ""
|
|
|
|
self.__ICG_ImageGenerator_Data_Root = ""
|
|
self.__Normal_ImageGenerator_Data_Root = ""
|
|
self.__Comprehensive_Generator_Root = ""
|
|
|
|
self.__Labels = []
|
|
self.__OneHot_Encording = []
|
|
pass
|
|
|
|
def Set_Labels(self):
|
|
self.__Labels = ["stomach_cancer_Crop", "Normal_Crop"]
|
|
|
|
def Set_Save_Roots(self):
|
|
self.__ICG_Training_Root = "../Dataset/Training/CA_ICG"
|
|
self.__Normal_Training_Root = "../Dataset/Training/CA"
|
|
self.__Comprehensive_Training_Root = "../Dataset/Training/Mixed"
|
|
|
|
self.__ICG_Test_Data_Root = "../Dataset/Training/CA_ICG_TestData"
|
|
self.__Normal_Test_Data_Root = "../Dataset/Training/Normal_TestData"
|
|
self.__Comprehensive_Testing_Root = "../Dataset/Training/Comprehensive_TestData"
|
|
|
|
self.__ICG_Validation_Data_Root = "../Dataset/Training/CA_ICG_ValidationData"
|
|
self.__Normal_Validation_Data_Root = "../Dataset/Training/Normal_ValidationData"
|
|
self.__Comprehensive_Validation_Root = "../Dataset/Training/Comprehensive_ValidationData"
|
|
|
|
self.__ICG_ImageGenerator_Data_Root = "../Dataset/Training/ICG_ImageGenerator"
|
|
self.__Normal_ImageGenerator_Data_Root = "../Dataset/Training/Normal_ImageGenerator"
|
|
self.__Comprehensive_Generator_Root = "../Dataset/Training/Comprehensive_ImageGenerator"
|
|
|
|
def Set_OneHotEncording(self, Content):
|
|
Array_To_DataFrame = pd.DataFrame(Content)
|
|
onehotencoder = OneHotEncoder()
|
|
onehot = onehotencoder.fit_transform(Array_To_DataFrame).toarray()
|
|
|
|
self.__OneHot_Encording = onehot
|
|
|
|
def Get_Data_Label(self):
|
|
'''
|
|
取得所需資料的Labels
|
|
'''
|
|
return self.__Labels
|
|
|
|
def Get_Save_Roots(self, choose):
|
|
'''回傳結果為Train, test, validation
|
|
choose = 1 => 取ICG Label
|
|
else => 取Normal Label
|
|
|
|
若choose != 1 || choose != 2 => 會回傳四個結果
|
|
'''
|
|
if choose == 1:
|
|
return self.__ICG_Training_Root, self.__ICG_Test_Data_Root, self.__ICG_Validation_Data_Root
|
|
if choose == 2:
|
|
return self.__Normal_Training_Root, self.__Normal_Test_Data_Root, self.__Normal_Validation_Data_Root
|
|
else:
|
|
return self.__Comprehensive_Training_Root, self.__Comprehensive_Testing_Root, self.__Comprehensive_Validation_Root
|
|
|
|
def Get_Generator_Save_Roots(self, choose):
|
|
'''回傳結果為Train, test, validation'''
|
|
if choose == 1:
|
|
return self.__ICG_ImageGenerator_Data_Root
|
|
if choose == 2:
|
|
return self.__Normal_ImageGenerator_Data_Root
|
|
else:
|
|
return self.__Comprehensive_Generator_Root
|
|
|
|
def Get_OneHot_Encording_Label(self):
|
|
return self.__OneHot_Encording |